
5
th

 IUGRC International Undergraduate Research Conference,

Military Technical College, Cairo, Egypt, July 09
th

 – 12
th

 August 2021. 1

Proposed OBC Prototype for CubeSat

Mohamed Elazab Abdalrahman, Ahmed Ehab Fikry, and Mahmoud Nasr Eldeen
Department of Computer Engineering and Artificial Intelligence, Military Technical College, Cairo, Egypt,

mohamed.elazab080@gmail.com, ahmedfikry059@gmail.com, sirghandy@gmail.com

Supervisors: Dr. Sherif Hussein and Dr. Mohamed A. Elshafey

Department of Computer Engineering and Artificial Intelligence, Military Technical College, Cairo, Egypt,

s.hussein@mtc.edu.eg and m.shafey@mtc.edu.eg

 Abstract– The Cube Satellite (CubeSat) is an ideal solution to

gain access to space in terms of budget and integration time for

research and experimental science payloads. The On-Board

Computer (OBC) is considered to be the main subsystem of the

CubeSat among others. It manages all the tasks taking place within

the satellite. Its main function is to interpret the orders from Earth,

treat and return the results. This paper surveys a previously

developed CubeSat OBCs with focus on the characteristics of the

embedded system used in the design and implementation phases.

Then, it presents the design, development and implementation

process of a prototype OBC hardware and software for CubeSat.

The proposed software architecture is implemented as a prototype

on one of STMicroelectronics boards. The choice of this

development board was highly motivated by the mission of the

CubeSat. Finally, a series of tests are successfully conducted to

evaluate the proposed architecture.

 Keywords-- CubeSat, OBC, OBC Hardware, OBC Software.

I. INTRODUCTION

 In recent years, the advancement of space technology

could not pass unnoticed, thus, a lot academic institutions

across the world focus on space science. Specifically, more

attention were given to the CubeSat platform that was

proposed by the California Polytechnic State University

(CalPoly) in 1999 [1]. CubeSats comprise of several

subsystems, each is performing a dedicated task. According to

Gildeh’s basic design, the CubeSat normally includes the

following subsystems [2]:

 An On-Board Computer (OBC), which is the most

important subsystem in the CubeSat.

 An Attitude Determination and Control Subsystem

(ADCS).

 A Radio Frequency (RF) Communication Subsystem

(CSS).

 Electrical Power Subsystem (EPS) supplied by solar

panels.

 A memory module generally associated with the

OBC.

 A payload (e.g. beacon transmitter or camera) with its

control unit.

 Many commercial companies provide modules for OBC

but these modules cost too much, so we are intending to do the

same purpose but with a less cost and make this development

available for all engineers to participate in a more

development in this field.

 OBC is the brain of the CubeSat. It consists of a controller

that is connected to other subsystems through a serial data bus.

The surface area of the solar panels of the CubeSat is

proportional to the CubeSats’ size itself. This limitation

requires that the controller primarily consumes low average

power and at the same time handles all data transfers

according to the mission requirements. The major functions of

the OBC are as follows [3]:

 Store telemetry and satellite data for transmitted to the

ground station for analysis.

 Encodes and decodes packets sent/received to and

from the ground station.

 Process of the telecommands received from the

ground station.

 Monitoring all of other subsystems and resetting

certain critical subsystems if necessary.

 Currently Cubesat projects are in international

collaborations of more than 100 universities, colleges,

agencies and private firms that gather all types of science. This

in return requires system engineers, in our Satellite localization

centre in Military technical college (MTC) in Egypt, we are

concerning with the aspect of participation and collaboration

of all engineers to build different types of integrated systems

and the Cubesat was chosen as an application for our criteria.

 This paper proposes a prototype OBC subsystem for

CubeSat applications, based on ARM Cortex M4 processor

using STM32F446RE NUCLEO board. Our design was based

on two main milestones. The first one is the set of

requirements and specifications for the OBC in order to fulfil

all requirements from OBC subsystem in the CubeSat. The

second is to implement and test the OBC architecture with all

its drivers according to the specifications defined in the first

phase. We concerned in our design with the development of all

drivers in a great fashion that makes APIs are very simple, by

which the user requirements can be accomplished very

quickly, with less memory and more power saving as well. The

rest of this paper is organized as follows. In Section 2, we give

a brief on the history of OBC design and development. Then,

in Sections 3, we introduce the proposed frame work of the

OBC prototype. In Section 4, we evaluate and test our design.

316

mailto:mohamed.elazab080@gmail.com
mailto:ahmedfikry059@gmail.com
mailto:sirghandy@gmail.com
mailto:s.hussein@mtc.edu.eg
mailto:m.shafey@mtc.edu.eg

5
th

 IUGRC International Undergraduate Research Conference,

Military Technical College, Cairo, Egypt, July 09
th

 – 12
th

 August 2021. 2

Finally, section 5 concludes our work and gives

recommendations for the future work.

II. RELATED WORK

 CubeSats’ architecture is similar to what is shown in

Figure 1. The OBC is located at the centre of all other

subsystems, where the communication between systems is

conducted via a serial bus interface. The OBC includes enough

memory that supports the functions of other subsystems, as it

is used to record housekeeping parameters and telemetry data

collected at given coordinates, before starting the transmission

to the ground station [4].

Fig. 1 A CubeSat general outlook.

 Each subsystem is assigned to a dedicated task. A brief

description of the function of the main subsystem as follows:

 Electrical Power Subsystem (EPS) supplies a regular

source of electrical power to all satellite subsystems

during the mission.

 Communication Subsystem provides the

communication link between the satellite and the

ground station.

 ADCS provides a stabilization mechanism in order to

keep the satellite’s orientation steady and ensure it

operates efficiently [5].

 Payload subsystem, based on the satellite mission, can

be classified as communications, imaging or scientific

missions.

 OBC, which is our concentration in this paper, acts as

heart of this data transfer and as the communications

link between all other subsystems in the CubeSat.

 To date, a number of successful CubeSat missions orbiting

Earth were very successful and there are still a large number of

them currently under development by different universities,

research institutions and organisations all over the world.

 One of the most famous trails for OBC development was

César A. Perdomo, Julián R. Camargo& Albeiro Cortes

Cabezas [6] in their trial for implementing OBC-OBDH

(Onboard-Computer On-Board Data Handling) to meet

requirements of Cubesat QB50 project and the implementation

of FreeRTOS. In this work they developed a Printed Circuit

Board (PCB) that includes two SD-modules as redundant

systems and make its circuit embedded with their PCB but all

other sensors are represented as modules. Moreover,

Innovative Solution in Space (ISIS) was developed in 2006. Its

scientific idea was mainly based on the Delfi-C3 Dutch

CubeSat mission (Delft University of Technology). ISIS was

successfully put into its orbit in 2008 and is still operational.

III. THE PROPOSED OBC PROTOTYPE

A. Hardware perspective

 In this section we will discuss the proposed system for the

OBC and the specification of the Microcontroller Unit (MCU)

used for it. This section describes the multiprocessing and real

time availability of the selected MCU [7]. The final

connections of the integrated framework are also showed.

1) The proposed OBC module

 A Cubesat system consists of certain subsystems; each

subsystem has a certain specification function. OBC is the

main brain of the system that controls all subsystems hanging

on the Cubesat. In the proposed prototype, the OBC has the

following major functionalities:

 Recording and storage of telemetry and satellite

payload data that it transmits to the Ground Control

Station (GCS) to be analyzed.

 It acts as an encoder and decoder of data packets from

and to the GCS.

 It also process telecommands from the GCS including

the time delay that is received on the uplink channel.

 Monitors several subsystems and implementing

watchdog function.

 It may be used for power supply management

(checking battery level) and shutting down

subsystems (power saving mode).

Fig. 2 Functional architecture of the OBC module.

 The first subsystem, which we will discuss is the EPS. It is

responsible for feeding the power for the whole system. This

317

5
th

 IUGRC International Undergraduate Research Conference,

Military Technical College, Cairo, Egypt, July 09
th

 – 12
th

 August 2021. 3

power comes from solar panels and it is controlled to be sun

synchronous, OBC can monitor the usage of the power through

ADC peripheral of the MCU. The second subsystem is the

ADCS. In which, we setup sensors to be ready for reading

measures and make calibration for all sensors on the system

then we do sensor fusion in order to make attitude

determination and control, the output of attitude determination

and control is fed to either magnetorquer or reaction-wheel.

The third subsystem is the Payload. Our payload is a VGA

camera. This camera is assigned to operate between two sets of

certain latitudes and longitudes to take either number of shots

or continuous recording of images and log these images on the

SD-card. The fourth subsystem is the CSS. It is responsible for

sending telemetry data and payload data, stored before in the

SD-card, when it is in the line of sight of GCS. It is also

responsible for receiving telecommands from GCS, by which

the desired location to be monitored will be determined. It also

handles all errors occurs in the system. The following figure

shows the hardware connections of the OBC subsystem with

other subsystems in a proposed framework.

Fig. 3 The hardware connections in the proposed framework containing the OBC module.

2) Hardware specification of OBC subsystem

 It is necessary that our selected MCU should meet the

basic functional requirements of the OBC subsystem (i.e. it

should has all the peripherals needed to accomplish our

mission). Since we have many sensors that operates on SPI,

I2C, USART, GPIO, etc., our board must have these control

units. In the proposed prototype, we select STM32F446RE

Nucleo ARM Cortex M4 based MCU. In the upcoming section

we will preview our board specifications and its merits that

leads us to this choice. The following data, shown in Table 1,

are taken from the manufacturer datasheet [8, 9].

TABLE I

GENERAL FEATURES FOR STM32F446XX
Processor core ARM® 32-bit Cortex®-M4 CPU 180 MHz

Memory 512 kB of Flash memory

Clock, reset and

supply

management

1.7 V to 3.6 V application supply and I/Os –

POR, PDR, PVD and BOR – 4-to-26 MHz

crystal oscillator – Internal 16 MHz

Low power Sleep, Stop and Standby modes– VBAT

supply for RTC, 20×32 bit backup registers +

4 KB backup SRAM.

General-

purpose DMA

16-stream DMA controller with FIFOs and

burst support.

Timers Up to 17 timers: 2x watchdog, 1x SysTick

Timer.

Debug mode SWD & JTAG interfaces.

I/O Busses Up to 114 I/O ports with interrupt capability –

Up to 111 fast I/Os up to 90 MHz – Up to 112

5 V-tolerant I/Os.

Interfaces Up to 20 communication interfaces – SPDIF-

Rx – 4 × I2C interfaces (SMBus/PMBus) – 4

USARTs/2 UARTs (11.25 Mbit/s, ISO7816

interface, LIN, IrDA, modem control) – 4 SPIs

(45 Mbits/s), 3 with muxed I2S for audio class

accuracy via internal audio PLL or external

clock – 2 x SAI (serial audio interface) – 2 ×

CAN (2.0B Active) – SDIO interface.

RTC sub second accuracy, hardware calendar

318

5
th

 IUGRC International Undergraduate Research Conference,

Military Technical College, Cairo, Egypt, July 09
th

 – 12
th

 August 2021. 4

Fig. 4 Bus system Architecture for STM32f446xx [8, 9].

3) Real System in Workshop

 We applied the concept of Flat sat design as a proof of

concept for the proper operation of the system in the work

shop, usually this concept comes before any manufacturing of

boards or PCBs. Tests are made in the lab by many ways such

as calibrating sensors and checking all the peripherals

connected to OBC against other calibrated sensors. So the

following figure shows the real connections after finishing the

system in the work shop.

Fig. 5 System Wiring in Workshop (Flat sat).

B. Software and drivers’ development

 In this section we will show the development of all

necessary drivers required for the proper operation of all

sensor and modules connected to the OBC. The first one will

be the GPIO which is most important one as it is used with all

drivers, then we will present I2C, SPI, and UART/USART

drivers, consequently. We presented a flowchart for each

driver that describes most of its developed APIs. Additionally,

we gave a brief concept or vision about each driver and why it

was necessary for our work.

1) GPIO Driver

 This driver is developed to allow user to read and write

any digital and/or analog value. It is used as well to configure

pins for other protocols of communications (I.e. I2C, USART

and SPI). Our board contains 7 types of GPIOs marked from A

to H each of 15 pins. We developed many APIs to allow user

from manipulating the GPIO peripheral efficiently. Figure 5

indicates some of developed APIs in GPIO driver.

2) SPI Driver

 We need to setup SD-Module so we developed this

driver to manipulate this module. In the following we will give

a brief explanation about SPI operation that we used to create

its APIs. The master initiates the communication, determine

the clock speed and select the devices to talk to while the other

slave devices wait for the master device to communicate with

them. The master initiates communication by dropping slave

pins to 0V.The master device controls the clock signal by

creating a pulse from logic 0 (0 volts) to logic 1 (3.3/5 volts)

to control the speed and time the data passing through the

MISO and MOSI lines. Figure 6 indicates some of APIs in SPI

driver.

3) I2C Driver

 We need to setup MPU6050 so we developed this driver

to manipulate this sensor. I2C combines the best features of

SPI and UARTs. With I2C, you can connect multiple slaves to

a single master (like SPI) and you can have multiple masters

controlling single, or multiple slaves. This is really useful

when you want to have more than one microcontroller logging

data to a single memory card or displaying text to a single

LCD. Like UART communication, I2C only uses two wires to

transmit data between devices. Figure 7 indicates some of

developed APIs in I2C driver.

4) USART/UART Driver

 We need to setup GPS, Serial communication with USB

with Raspberry pi and RF Module so we developed this driver

to deal with these peripherals. UART stands for Universal

Asynchronous Receiver-Transmitter. It is a hardware

peripheral that is present in microcontroller. Its function is to

convert the incoming and outgoing data into serial binary

stream. By using serial to parallel conversion, an 8-bit serial

data received from the peripheral device is converted into

parallel form and parallel data received from the CPU is

converted using serial to parallel conversion. This data is

present in modulating form and transmits at a defined baud

rate. It is used when the high-speed data transfer is not

required. It is a cheap communication device with a single

transmitter/receiver. It requires a single wire for transmitting

the data and another for receiving. It can be interfaced with a

PC (personal computer) using an RS232-TTL converter or

319

5
th

 IUGRC International Undergraduate Research Conference,

Military Technical College, Cairo, Egypt, July 09
th

 – 12
th

 August 2021. 5

USB-TTL converter. The common thing between RS232 and

UART is they both don’t require a clock to transmit and

receive data. The UART frame consists of 1 start bit, 1 or stop

bits and a parity bit for serial data transfer. Figure 8 indicates

some of developed APIs in UART/USART driver.

Fig. 6 Flowchart for GPIO APIs for STM32f446xx devices. Fig. 7 Flowchart for SPI APIs for STM32f446xx devices

Fig.8 Flowchart for I2C APIs for STM32f446xx devices [4, 3]. Fig.9 Flowchart for UART/USART APIs for STM32f446xx

devices [3].

IV. TESTS AND RESULTS

320

https://www.codrey.com/embedded-systems/rs232-serial-communication/

5
th

 IUGRC International Undergraduate Research Conference,

Military Technical College, Cairo, Egypt, July 09
th

 – 12
th

 August 2021. 6

 After finishing the development of these drivers we can

say that each driver is tested by many ways to make sure that

drivers’ works properly, we made that by two ways:

1) We made a code to test every peripheral on the IDE

used for developing drivers. That shows us that our

target has accomplished but that wasn’t sufficient

enough to proof that the driver works well so we need

another way to increase our reliability of the proper

operation of drivers.

2) This way we used the debugging mode and we could

monitor all registers in memory and trace all changes

with these registers and compared the result with the

described operation discussed in reference manual.

 In the following figure we will show an example of code

based on GPIO that has been developed in debugging mode

and we compared the results of values set in registers to that in

reference manual to make sure that the board works properly

and it is obvious from the result we had got that the LED is

blinking as the users changes the time delay.

Fig. 10 Debugging mode from eclipse IDE (GPIO Registers shown)

V. CONCLUSION AND FUTURE WORK

 We have designed all necessary drivers for all required

peripherals for OBC and we tested each driver with a separate

application to proof the proper operation of the driver. The

result of that work led to an integration of these peripherals in

the form of sensor operation as an integrated code with a

memory a less consumption than drivers developed by

CubeMx S/W or any generic libraries for this boards, In my

opinion that’s because that in my driver I could initiate only

the required register for example to be configured while other

libraries as the don’t exactly know what is the user

requirements they initiate may be all the configuration of all

registers. Hence, our developed drivers consume less energy

than other libraries, since it doesn’t consumes all MCU

peripherals or PINs for any driver. In the future work we are

seeking for implementing FreeRTOS to manage task operation

and we will try to get rid of the computer (Raspberry pi) and

use only STM board. That will lead us to develop a new driver

that will be able to operate the camera on the MCU.

 We are also trying to develop a GCS to be able to monitor

the system based on LabVIEW Software; this GCS will be

able to send telecommands in a visual interface form that will

facilitate the operation for the operator on the GCS, More over

the operator will see the performance of the CubeSat and will

send telecommands for the region of interest to be captured by

payload (camera), By sending to latitudes and longitudes, and

the CubeSat will take this information and start taking snaps

according to user desire.

REFERENCES

321

5
th

 IUGRC International Undergraduate Research Conference,

Military Technical College, Cairo, Egypt, July 09
th

 – 12
th

 August 2021. 7

[1] Poly, Cal. "Kahua Ranch Hosts June 23 Reception for Dean, Professor,

Alumni and Students from Cal Poly College of Agriculture." (2002),

Retrieved (2021).

[2] Gildeh, D. 2003. Final Report: Design and development of OBC for

Pico-Sat PALMSAT. University of Surrey, Guildford.

[3] Wells, G. J., Stars, L.. & Jeans, T. 2003. Canada's Smallest Satellite;

The Canadian Advanced Nanospace eXperiment (Can X-1). University

of Toronto Institute for Aerospace Studies, pp. 4-7. Toronto, Canada.

[4] Hardy, J. 2009. Implementation du Protocol AX.25 a Board du Nano

satellite OUFTI-1.Master's thesis, University of Liege, Liege.

[5] Hales, J.H. & Pedersen, M. 2002. Two-Axis MOEMS Sun Sensor for

Pico Satellites. Proceedings of The 16th Annual AIAA/USU Conference

on small satellites. 2002 Utah, USA (SSC02-VI-6).

[6] Perdomo, César A., Julián R. Camargo, and Albeiro Cortes Cabezas.

"On Board Computer Module for Cubesat Compatible with

QB50." Mod. Appl. Sci. 12.12 (2018): 206, Retrieved (2021).

[7] Jacko, Patrick, et al. "The parallel data processing by nucleon board

with STM32 microcontrollers." 2017 International Conference on

Modern Electrical and Energy Systems (MEES). IEEE, 2017.

[8] STMicroelectronics,” ARM® Cortex®-M4 32b MCU+FPU,

225DMIPS, up to 512kB Flash/128+4KB RAM, USB OTG HS/FS, 17

TIMs, 3 ADCs, 20 comm. Interfaces,” DocID027107 Rev 6, September

2016, retrieved online from: https://www.alldatasheet.com/datasheet-

pdf/pdf/882029/STMICROELECTRONICS/STM32F446RE.html

[9] STMicroelectronics,” STM32F446xx advanced ARM®-based 32-bit

MCUs,” DocID026976 Rev 3 , July 2017, retrieved online

from:https://www.st.com/resource/en/reference_manual/dm00135183-

stm32f446xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf.

[10] STMicroelectronics,”UM1724 User manual,” DocID025833 Rev 12,

September 2016, retrieved online from:

https://www.st.com/resource/en/user_manual/dm00105823-stm32-

nucleo64-boards-mb1136-stmicroelectronics.pdf

[11] NXP Semiconductors, “I2C-bus specification and user manual,”

UM10204, Rev. 6. Retrieved online from:

https://www.nxp.com/docs/en/user-guide/UM10204.pdf

322

https://www.alldatasheet.com/datasheet-pdf/pdf/882029/STMICROELECTRONICS/STM32F446RE.html
https://www.alldatasheet.com/datasheet-pdf/pdf/882029/STMICROELECTRONICS/STM32F446RE.html
https://www.st.com/resource/en/reference_manual/dm00135183-stm32f446xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00135183-stm32f446xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105823-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105823-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

