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Abstract– The Partial Differential Equations (PDEs) are very 

important in dynamics, aerodynamics, elasticity, heat transfer, waves, 

electromagnetic theory, transmission lines, quantum mechanics, 

weather forecasting, prediction of disasters, how universe 

behave ……. Etc., second order linear PDEs can be classified 

according to the characteristic equation into 3 types coinciding 3 

basic conic sections hyperbolic, parabolic and elliptic; Elliptic 

equations have none family of (real) characteristic curves. All the 

three types of equations can be reduced to its first canonical form 

finding the general solution or the second canonical form similar to 

3 basic PDE models; Elliptic equations reduce to a form coinciding 

with the Laplace’s equations Thus, Laplace’s equations serve as 

basic canonical models for all Elliptical second order linear PDEs 

the reduced canonical form can be modeled by boundary condition 

with COMSOL Multiphysics and Mathematica elliptical PDEs serve 

as basic uniform steady state solution for analysis of both parabolic 

and hyperbolic PDES. 

Keywords-- elliptical PDEs – canonical form – constant 

coefficient PDEs – variable coefficients PDEs – LaPlace equation. 

1.  Introduction  

A PDE is an equation that contains one or more partial 

derivatives of an unknown function that depends on at least two 

variables. usually, one of these deals with time t and the 

remaining with space. PDEs are very important in dynamics, 

elasticity, heat transfer, electromagnetic theory, and quantum 

mechanics. 

The theory of partial differential equations of the second order 

is more complicated than the equations of the first order, and it 

is much more typical of the subject as a whole. Within the 

context, considerably better results can be achieved for 

equations of the second order in two independent variables than 

for equations in space of higher dimensions. Linear equations 

are the easiest to handle. In general, a second order linear partial 

differential equation is of the form  

𝐴(𝑥, 𝑦)𝑢𝑥𝑥 + 𝐵(𝑥, 𝑦)𝑢𝑥𝑦 + 𝐶(𝑥, 𝑦)𝑢𝑦𝑦 + 𝐷(𝑥, 𝑦)𝑢𝑥 +

𝐸(𝑥, 𝑦)𝑢𝑦 + 𝐹(𝑥, 𝑦)𝑢 = 𝐺(𝑥, 𝑦)  (1) 

where A, B, C, D, E, F and G are in general functions of x and 

y but they may be constants. The subscripts are defined as 

partial derivatives where 𝑢𝑥 =
𝜕𝑢

𝜕𝑥
 

2.  Canonical form 

The classification of partial differential equations is suggested 

by the classification of the quadratic equation of conic sections 

in analytic geometry.  

    𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝑓 = 0      

represents hyperbola, parabola, or ellipse accordingly as 

𝐵2−4AC is positive, zero, or negative. 

Classifications of PDE are: 

(i) Hyperbolic if  𝐵2−4AC > 0 

(ii) Parabolic if  𝐵2−4AC = 0  

(iii) Elliptic if  𝐵2−4AC < 0   

 

The classification of second-order equations is based upon the 

possibility of reducing equation by coordinate transformation to 

canonical or standard form at a point. An equation is said to be 

hyperbolic, parabolic, or elliptic at a point (𝑥0, 𝑦0) accordingly 

as; 

 𝐵2(𝑥0, 𝑦0)−4A(𝑥0, 𝑦0)C(𝑥0, 𝑦0)     (2) 

is positive, zero, or negative. If this is true at all points, then the 

equation is said to be hyperbolic, parabolic, or elliptic. In the 

case of two independent variables, a transformation can always 

be found to reduce the given equation to canonical form in a 

given domain. However, in the case of several independent 

variables, it is not, in general, possible to find such a 

transformation 

To transform equation (1) to a canonical form we make a 

change of independent variables. Let the new variables be;  

ε = 𝜀 (x, y), 𝜂 = 𝜂 (x, y)  

Assuming that 𝜀  and 𝜂  are twice continuously differentiable 

and that the Jacobian;  

J= |
εx εy

ηx ηy
| 

 is nonzero in the region under consideration, then x and y can 

be determined uniquely. Let x and y be twice continuously 

differentiable functions of 𝜀 and 𝜂 Then we have,  

𝑢𝑥 =
𝜕𝑢

𝜕ε

𝜕

𝜕𝑥
+

𝜕𝑢

𝜕𝜂

𝜕𝜂

𝜕𝑥
= 𝑢 𝜀𝑥 + 𝑢𝜂𝜂𝑥         

𝑢𝑦 =
𝜕𝑢

𝜕

𝜕

𝜕𝑦
+

𝜕𝑢

𝜕𝜂

𝜕𝜂

𝜕𝑦
= 𝑢 𝜀𝑦 + 𝑢𝜂𝜂𝑦    



6th IUGRC International Undergraduate Research Conference, 

Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

  

  2 

𝑢𝑥𝑥 =
𝜕𝑢𝑥

𝜕

𝜕

𝜕𝑥
+

𝛿𝑢𝑥

𝛿𝜂

𝛿𝜂

𝛿𝑥
= 𝑢 𝜀𝑥

2 + 2𝑢 𝜂𝜀𝑥𝜂𝑥 +

𝑢𝜂𝜂𝜂𝑥
2 + 𝑢 𝜀𝑥𝑥 + 𝑢𝜂𝜂𝑥𝑥   

𝑢𝑦𝑦 =
𝜕𝑢𝑦

𝜕

𝜕

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝜂

𝜕𝜂

𝜕𝑦
= 𝑢 𝜀𝑦

2 + 2𝑢 𝜂𝜀𝑦𝜂𝑦 +

𝑢𝜂𝜂𝜂𝑦
2 + 𝑢 𝜀𝑦𝑦 + 𝑢𝜂𝜂𝑦𝑦   

𝑢𝑥𝑦 =
𝜕𝑢𝑥

𝜕

𝜕

𝜕𝑦
+

𝜕𝑢𝑥

𝜕𝜂

𝜕𝜂

𝜕𝑦
 = 𝑢 𝜀𝑥𝜀𝑦 + 𝑢𝜂𝜂𝜂𝑥𝜂𝑦 +

𝑢 𝜀𝑥𝑦 + 𝑢𝜂𝜂𝑥𝑦 + 𝑢 𝜂(𝜀𝑥𝜂𝑦 + 𝜀𝑦𝜂𝑥)     
substituting in (1) 

𝐴∗(𝑥, 𝑦)𝑢𝑥𝑥 + 𝐵∗(𝑥, 𝑦)𝑢𝑥𝑦 + 𝐶∗(𝑥, 𝑦)𝑢𝑦𝑦 +

𝐷∗(𝑥, 𝑦)𝑢𝑥 + 𝐸∗(𝑥, 𝑦)𝑢𝑦 + 𝐹∗(𝑥, 𝑦)𝑢 = 𝐺∗(𝑥, 𝑦)      (3)     

Where; 

A∗ = Aεx
2 + Bεxεy + cεy

2        

𝐵∗ = 2𝐴𝜀𝑥𝜂𝑥 + 𝐵(𝜀𝑥𝜂𝑦 + 𝜀𝑦𝜂𝑥) + 2𝐶𝜀𝑦𝜂𝑦 

𝐶∗ = 𝐴𝜂𝑥
2 + 𝐵𝜂𝑥𝜂𝑦 + 𝐶𝜂𝑦

2  

𝐷∗ = 𝐴𝜀𝑥𝑥 + 𝐵𝜀𝑥𝑦 + 𝐶𝜀𝑦𝑦 + 𝐷𝜀𝑥 + 𝐸𝜀𝑦  

𝐸∗ = 𝐴𝜂𝑥𝑥 + 𝐵𝜂𝑥𝑦 + 𝐶𝜂𝑦𝑦 + 𝐷𝜂𝑥 + 𝐸𝜂𝑦      

𝐹∗ = 𝐹     ,        𝐺∗ = 𝐺    

The resulting equation (3) is in the same form as the original 

equation (1) under the general transformation. The nature of the 

equation remains constant if the Jacobian does not vanish.  

𝐵∗2 − 4𝐴∗𝐶∗ = 𝐽2(𝐵2 − 4𝐴𝐶)    and     𝐽2 ≠ 0,   We shall 

assume that the equation under consideration is of the single 

type in a given domain. The classification of equation (1) 

depends on the coefficients  

A (x, y), B (x, y), and C (x, y) at a given point 

(x, y) so equation (1) rewritten as; 

A(x, y)uxx + B(x, y)uxy + C(x, y)uyy =

𝐻(𝑥, 𝑦, 𝑢, 𝑢𝑥 , 𝑢𝑦)            (4) 

Where; A, B, C≠0 

And equation (3) rewritten as; 

A∗(x, y)uεε + B∗(x, y)uεη + C∗(x, y)uηη =

𝐻(𝜀, 𝜂, 𝑢, 𝑢 , 𝑢𝜂)  

Where A∗, C∗ =0 

Aεx
2 + Bεxεy + cεy

2 = 0 

𝐴𝜂𝑥
2 + 𝐵𝜂𝑥𝜂𝑦 + 𝐶𝜂𝑦

2 = 0 

Since the 2 equations from the same type, we can rewrite them; 

Aεx
2 + Bεxεy + cεy

2 = 0       

where ε stands for the 2 functions ε, 𝜂 

Dividing by εy
2       𝐴(

εx

εy
)2 + 𝐵

εx

εy
+ 𝐶 = 0 

 
𝑑𝑦

𝑑𝑥
= −

εx

εy
    𝐴 (

𝑑𝑦

𝑑𝑥
)

2
− 𝐵

𝑑𝑦

𝑑𝑥
+ 𝐶 = 0 ; 

therefore, two roots are    
𝑑𝑦

𝑑𝑥
=

B±√𝐵2−4A𝐶

2𝐴
 

These equations, which are known as the characteristic 

equations, are ordinary differential equations for families of 

curves in the by-plane along which 

ε = constant and 𝜂  = constant. The integrals of equation are 

called the characteristic curves. Since the equations are first 

order ordinary differential equations, the solutions may be 

written as; 

 Φ1 (x, y) = c1   Φ2 (x, y) = c2    with c1 and c2 as constants.  

Hence the transformations 

ε = Φ1 (x, y),  𝜂 = Φ2 (x, y)  

will transform equation (4) to a canonical form.  

We show that the characteristic of any elliptical PDE can be 

transformed as;  

*𝐵2 − 4𝐴𝐶 < 0  so, we have no real characteristic but it has 

complex solution which is analytic along some neighborhood 

domain can be reduced into first canonical form                           

𝑢 𝜂 = 𝐻(𝜀, 𝜂, 𝑢, 𝑢 , 𝑢𝜂)  where  𝜀 = α + iβ 

𝜂 = α − iβ are two conjugate functions where;  

𝛼 =
1

2
(𝜀 + 𝜂)  ,   𝛽 =

1

2𝑖
(𝜀 − 𝜂)   

𝑢𝑥 =
𝜕𝑢

𝜕α

𝜕α

𝜕𝑥
+

𝜕𝑢

𝜕β

𝜕β

𝜕𝑥
= 𝑢αα𝑥 + 𝑢ββ𝑥          

𝑢𝑦 =
𝜕𝑢

𝜕α

𝜕α

𝜕𝑦
+

𝜕𝑢

𝜕β

𝜕β

𝜕𝑦
= 𝑢αα𝑦 + 𝑢ββ𝑦    

𝑢𝑥𝑥 =
𝜕𝑢𝑥

𝜕α

𝜕α

𝜕𝑥
+

𝜕𝑢𝑥

𝜕β

𝜕β

𝜕𝑥
= 𝑢ααα𝑥

2 + 2𝑢αβα𝑥β𝑥 + 𝑢βββ𝑥
2 +

𝑢αα𝑥𝑥 + 𝑢ββ𝑥𝑥    

𝑢𝑦𝑦 =
𝜕𝑢𝑦

𝜕α

𝜕α

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝜂

𝜕𝜂

𝜕𝑦
= 𝑢ααα𝑦

2 + 2𝑢α𝜂α𝑦β𝑦 + 𝑢βββ𝑦
2 +

𝑢αα𝑦𝑦 + 𝑢ββ𝑦𝑦   

𝑢𝑥𝑦 =
𝜕𝑢𝑥

𝜕α

𝜕α

𝜕𝑦
+

𝜕𝑢𝑥

𝜕β

𝜕β

𝜕𝑦
 = 𝑢ααα𝑥α𝑦 + 𝑢βββ𝑥β𝑦 + 𝑢αα𝑥𝑦 +

𝑢ββ𝑥𝑦 + 𝑢αβ(α𝑥β𝑦 + α𝑦β𝑥)     

substituting in (1) 

𝐴∗(𝑥, 𝑦)𝑢𝑥𝑥 + 𝐵∗(𝑥, 𝑦)𝑢𝑥𝑦 + 𝐶∗(𝑥, 𝑦)𝑢𝑦𝑦 + 𝐷∗(𝑥, 𝑦)𝑢𝑥 +

𝐸∗(𝑥, 𝑦)𝑢𝑦 + 𝐹∗(𝑥, 𝑦)𝑢 = 𝐺∗(𝑥, 𝑦)      (3)     

Where; 

A∗ = Aαx
2 + Bαxαy + cαy

2        

𝐵∗ = 2𝐴α𝑥β𝑥 + 𝐵(α𝑥β𝑦 + α𝑦β𝑥) + 2𝐶α𝑦β𝑦 

𝐶∗ = 𝐴β𝑥
2 + 𝐵β𝑥β𝑦 + 𝐶β𝑦

2  

𝐷∗ = 𝐴α𝑥𝑥 + 𝐵α𝑥𝑦 + 𝐶α𝑦𝑦 + 𝐷α𝑥 + 𝐸α𝑦  

𝐸∗ = 𝐴β𝑥𝑥 + 𝐵β𝑥𝑦 + 𝐶β𝑦𝑦 + 𝐷β𝑥 + 𝐸β𝑦      

𝐹∗ = 𝐹     ,        𝐺∗ = 𝐺    
The resulting equation (3) is in the same form as the original 

equation (1) under the general transformation. The nature of the 

equation remains constant if the Jacobian does not vanish.  

𝐵∗2 − 4𝐴∗𝐶∗ = 𝐽2(𝐵2 − 4𝐴𝐶)    and     𝐽2 ≠ 0,   We shall 

assume that the equation under consideration is of the single 

type in a given domain. The classification of equation (1) 

depends on the coefficients  

A (x, y), B (x, y), and C (x, y) at a given point 

(x, y) so equation (1) rewritten as; 

A(x, y)uxx + B(x, y)uxy + C(x, y)uyy = 𝐻(𝑥, 𝑦, 𝑢, 𝑢𝑥, 𝑢𝑦)            

(4) 

Where; A, B, C≠0 

And equation (3) rewritten as; 

A∗(x, y)u𝛼𝛼 + B∗(x, y)u𝛼β + C∗(x, y)uββ = 𝐻(𝜀, 𝜂, 𝑢, 𝑢𝛼 , 𝑢β) 

where B∗(x, y)uεη = 0  

𝑢 𝜂 ≠ 0   𝑠𝑜     B∗ = 0        A∗ = C∗        

𝐵∗ = 2𝐴𝜀𝑥𝜂𝑥 + 𝐵(𝜀𝑥𝜂𝑦 + 𝜀𝑦𝜂𝑥) + 2𝐶𝜀𝑦𝜂𝑦 = 0  

which is transformed into second canonical form 
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𝑢𝛼𝛼 + 𝑢𝛽𝛽 = 𝐻(𝛼, 𝛽, 𝑢, 𝑢𝛼 , 𝑢𝛽)  

similar to LaPlace equation to be modeled. 

  

3.  Elliptical equations  

3.1.  Fundamental Laplace equation 
𝑢𝑥𝑥 +  𝑢𝑦𝑦 = 0        𝐴 = 1      𝐵 = 0    𝐶 = 1          

𝐵2 − 4𝐴𝐶 = −4 < 0 

𝐴𝜆2 − 𝐵𝜆 + 𝑐 = 0       𝜆2 + 1 = 0    

𝜆 = ±𝑖           
𝑑𝑦

𝑑𝑥
= 𝑖             

𝑑𝑦

𝑑𝑥
= −𝑖  

∫ 𝑑𝑦 = ∫ 𝑖 𝑑𝑥              𝑖𝑦 = −𝑥 + 𝑐      

  𝑥 + 𝑖𝑦 = 𝑐1      𝑙𝑒𝑡 𝜀 = 𝑥 + 𝑖𝑦  

∫ 𝑑𝑦 = ∫ −𝑖 𝑑𝑥         𝑖𝑦 = 𝑥 + 𝑐  

𝑥 − 𝑖𝑦 = 𝑐2     𝑙𝑒𝑡 𝜂 = 𝑥 − 𝑖𝑦        
𝜀𝑥𝑥 = 𝜀𝑥𝑦 = 𝜀𝑦𝑦 = 0           𝜀𝑦 = 𝑖         𝜀𝑥 = 1        

𝜂𝑥𝑥 = 𝜂𝑦𝑦 =  𝜂𝑥𝑦 = 0          𝜂𝑥 = 1        𝜂𝑦 = −𝑖         

𝑢𝑥𝑥 = 𝑢 𝜀𝑥
2 + 2𝑢 𝜂𝜀𝑥𝜂𝑥 + 𝑢𝜂𝜂𝜂𝑥

2 + 𝑢 𝜀𝑥𝑥 + 𝑢𝜂𝜂𝑥𝑥 =

−𝑢 + 2𝑢 𝜂 − 𝑢𝜂𝜂  

𝑢𝑦𝑦 = 𝑢 𝜀𝑦
2 + 2𝑢 𝜂𝜀𝑦𝜂𝑦 + 𝑢𝜂𝜂𝜂𝑦

2 + 𝑢 𝜀𝑦𝑦 + 𝑢𝜂𝜂𝑦𝑦 =

𝑢 + 2𝑢 𝜂 + 𝑢𝜂𝜂  

𝑢𝑥𝑥 +  𝑢𝑦𝑦 = 4𝑢 𝜂      

𝑠𝑜 𝑡ℎ𝑒 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑚 𝑖𝑠        4𝑢 𝜂 = 0                                                             

𝑢 = 𝑔(𝜀)   , 𝑢 = 𝑓(𝜀) + 𝑔(𝜂) 

𝑢 = 𝑓(𝑥 + 𝑖𝑦) + 𝑔(𝑥 − 𝑖𝑦) = 𝑓(𝑧) + 𝑔(𝑧̅ ) 

𝑢 = 𝑢(𝑥,𝑦) + 𝑖𝑣(𝑥,𝑦) 

General method for particular solution 

𝑢 = 𝑢(𝑥,𝑦) + 𝑖𝑣(𝑥,𝑦)  𝑢 , 𝑣  should be analytic and harmonic 

function  𝑢𝑥 = 𝑣𝑦   , 𝑢𝑦 = −𝑣𝑥    

𝑤ℎ𝑒𝑟𝑒 𝑢 , 𝑣 are Real function of Real variables then the Real 

and Imaginary part of u each represents a solution for Laplace 

P.D.E or any combination of them   

As Laplace equation is symmetric so the solution should be 

radial so we can set  𝑢 = 𝑣(𝑟)        

𝑟 = √𝑥2 + 𝑦2    , 𝑢𝑥 = 𝑣𝑟𝑟𝑥 =
𝑥

𝑟
𝑣𝑟   

𝑢𝑥𝑥 =
𝑣𝑟

𝑟
+

𝑥2

𝑟2 𝑣𝑟𝑟 −
𝑥2

𝑟3 𝑣𝑟                                        

𝑢𝑦 = 𝑣𝑟𝑟𝑦 =
𝑦

𝑟
𝑣𝑟       

𝑢𝑦𝑦 =
𝑣𝑟

𝑟
+

𝑦2

𝑟2
𝑣𝑟𝑟 −

𝑦2

𝑟3
𝑣𝑟     

 𝑢𝑥𝑥 +  𝑢𝑦𝑦 =
1

𝑟
𝑣𝑟 + 𝑣𝑟𝑟    

By this method the P.D.E reduced into ode where; 
1

𝑟
𝑣𝑟 + 𝑣𝑟𝑟 = 0  solving for v by integration      

𝑣 = 𝑐𝑙𝑛 (
1

𝑟
) + 𝑐∗   𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑢𝑛𝑑𝑚𝑒𝑛𝑡𝑎𝑙 𝑠𝑜𝑙. 

𝑤ℎ𝑒𝑟𝑒    𝑐 =
1

𝜋
   ,    𝑐∗ = 0                                

𝑢 = 𝑣 =
−1

2𝜋
𝑙𝑛(𝑥2 + 𝑦2) 

𝑢 = 𝑣
−1

2𝜋
(ln(𝑥 + 𝑖𝑦) + ln(𝑥 − 𝑖𝑦))  

𝑓𝑟𝑜𝑚  𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 shown in fig. (1) 

 

Fig. 1.a. complex 3D plot for u, x and y. 

 

Fig. 1.b. complex vector plot for x and y. 

 

Fig. 1.c. complex contour plot for x and y. 

 

Fig. 1.d. complex modulus plot for x and y.   
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3.2.  Variable coefficient equation 
𝑢𝑥𝑥 + 𝑥2𝑢𝑦𝑦 = 0             

 B2 − 4𝐴𝐶 = −4𝑥2 < 0         𝑥 ≠ 0      
𝐴𝜆2 − 𝐵𝜆 + 𝑐 = 0   
dy

dx
= ±jx  

ε = 2y − jx2   ,      𝜂 = 2𝑦 + 𝑗𝑥2  

𝑢𝑥𝑥 = −4𝑥2𝑢 + 8𝑢 𝜂 − 4𝑥2𝑢𝜂𝜂        

𝑥2𝑢𝑦𝑦 = 4𝑥2𝑢 + 8𝑢 𝜂 + 4𝑥2𝑢𝜂𝜂   

𝑏𝑦 𝑎𝑑𝑑𝑖𝑛𝑔  

16𝑢 𝜂 = 0  ,     𝑢 𝜂 = 0    , 𝑢 = 𝑔(𝜀)     

𝑢 = 𝑓(𝜀) + 𝑔(𝜂) 

𝑢 = 𝑓(2y − jx2) + 𝑔(2𝑦 + 𝑗𝑥2) 

Apply second canonical form  

𝛼 =
1

2
(𝜀 + 𝜂) = 2𝑦 , 𝛽 =

1

2𝑖
(𝜀 − 𝜂) = −𝑥2  

𝑢𝑥𝑥 = 4𝑥2𝑢𝛽𝛽 − 2𝑢𝛽 , 𝑥2𝑢𝑦𝑦 = 4𝑥2𝑢𝛼𝛼    

𝑏𝑦 𝑎𝑑𝑑𝑖𝑛𝑔 𝑎𝑛𝑑 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝑤𝑒 𝑔𝑒𝑡   

𝑢𝛼𝛼 + 𝑢𝛽𝛽 =
−1

2𝛽
𝑢𝛽  which is similar to la place equation to be 

modeled 

3.3.  Constant coefficient equation 
𝑢𝑥𝑥 + 2𝑢𝑥𝑦 + 5𝑢𝑦𝑦 + 𝑢𝑥 = 0 

 B2 − 4𝐴𝐶 = −16 < 0      ,
𝑑𝑦

 𝑑𝑥
= 1 ± 2𝑗     

Separate variables and integrate to get  

𝜀 = 𝑦 − (1 + 2𝑗)𝑥      ,    𝜂 =  𝑦 − (1 − 2𝑗)𝑥  

16𝑢 𝜂 − (𝑢 + 𝑢𝜂) − 2𝑗(𝑢 − 𝑢𝜂) = 0     

𝑒𝑞𝑢𝑎𝑡𝑖𝑛𝑔 𝑟𝑒𝑎𝑙 𝑎𝑛𝑑 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡𝑠   
From imaginary equating we get    𝑢 = 𝑢𝜂 

From real equating we get 

16𝑢 𝜂 − (𝑢 + 𝑢𝜂) = 0  

𝑓𝑟𝑜𝑚 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑏𝑦 𝑠𝑢𝑏𝑖𝑠𝑡𝑢𝑡𝑖𝑛𝑔 

16𝑢 𝜂 − 2𝑢 = 0   

𝑢𝑠𝑖𝑛𝑔 𝑂𝐷𝐸 𝑏𝑦 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 𝑤𝑒 𝑔𝑒𝑡 

 𝑢 =  𝑒
𝜂

8𝑓(𝜀) + 𝑔(𝜂)  

𝑢 = 𝑒
𝑦−(1−2𝑗)𝑥

8 𝑓(𝑦 − (1 + 2𝑗)𝑥) + 𝑔(𝑦 − (1 − 2𝑗)𝑥)    
Which is general solution 

Apply second canonical form 

𝛼 =
1

2
(𝜀 + 𝜂) = 𝑦 − 𝑥    ,    𝛽 =

1

2𝑖
(𝜀 − 𝜂) = 2𝑥  

and substitute 

𝑢𝛼𝛼 + 𝑢𝛽𝛽 =
1

4
(𝑢𝛼 − 2𝑢𝛽)    which is similar to la place 

equation that can be modeled 

4.  Physical application 

1-Electrostatic potential charge in free region where the 

potential in the rectangle whose upper side is kept at potential 

110 V and whose other sides are grounded.  

0 ≤ 𝑥 ≤ 40  , 0 ≤ 𝑦 ≤ 20   
𝑙𝑎 𝑝𝑙𝑎𝑐𝑒 𝑒𝑞𝑢.    𝑢𝑥𝑥 +  𝑢𝑦𝑦 = 0 (𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛)   

where u is the potential as shown fig. (2) 

 

Fig. 2.a. COMSOL Coefficient interface. 

 

Fig. 2.b. Boundary condition. 

 

Fig. 2.c. Real 2D plot for u and x. 

 

Fig. 2.d. Real 3D plot for u, y and x. 
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2- Electrostatic potential charge in free region where the 

potential in the rectangle whose upper side is kept at potential 

110 V and whose other sides are grounded.  

0 ≤ 𝑥 ≤ 40  , 0 ≤ 𝑦 ≤ 20   ,   𝑢𝑥𝑥 + 2𝑢𝑥𝑦 + 5𝑢𝑦𝑦 +

𝑢𝑥 = 0   where u is the potential as shown fig. (3) 

 

Fig. 3.a. COMSOL Coefficient interface. 

 

Fig. 3.b. Boundary condition. 

 

Fig. 3.c. Real 2D plot for u and x. 

 

Fig. 3.d. Real 3D plot for u, y and x. 

 

3- Electrostatic potential charge in free region where the 

potential in the rectangle whose upper side is kept at potential 

110 V and whose other sides are grounded.  

0 ≤ 𝑥 ≤ 40  , 0 ≤ 𝑦 ≤ 20   ,   𝑢𝑥𝑥 + 𝑥2𝑢𝑦𝑦 = 0  where u 

is the potential as shown fig. (4) 

 

Fig. 4.a. COMSOL Coefficient interface. 

 

Fig. 4.b. Boundary condition. 
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Fig. 4.c. Real 2D plot for u and x. 

 

Fig. 4.d. Real 3D plot for u, y and x. 

 

4-The potential flow of an ideal incompressible fluid about a 

circular cylinder of radius R with    

a constant incident velocity 𝑣 𝑙𝑎 𝑝𝑙𝑎𝑐𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  

𝑢𝑟𝑟 +
1

𝑟
 𝑢𝑟+

1

𝑟2  𝑢𝜃𝜃 = 0  (𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟𝑖𝑐𝑎𝑙)                              

𝑢 = 𝑓(𝜀) + 𝑔(𝜂) 

𝑢 = 𝑓(ln(𝑟) − 𝑖𝜃) + 𝑔(ln(𝑟) + 𝑖𝜃) 

𝑢 = 𝐴𝑟𝑛𝑒𝑖𝑛𝜃 +
𝐵

𝑟𝑛 𝑒−𝑖𝑛𝜃                          

𝑅𝑒 = (𝐴𝑟𝑛 +
𝐵

𝑟𝑛
) cos(𝑛𝜃)  

𝐼𝑚 = (𝐴𝑟𝑛 −
𝐵

𝑟𝑛
) 𝑠𝑖𝑛(𝑛𝜃) 

𝑏𝑦 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑅𝑒, 𝐼𝑚  𝑤𝑒 𝑔𝑒𝑡       

𝑢 = (𝐴𝑟𝑛 +
𝐵

𝑟𝑛
) (Ccos(𝑛𝜃) + Dsin(𝑛𝜃))   

𝑛 = 1,2,3,4,5, … 

We are going to solve this P.D.E twice with different initial and 

boundaries once for stream lines  

Then for velocity potential.                                                                                                               

𝑢(𝑅,𝜃) = 0    ,      𝑟 = 𝑅      ,      𝑟 → ∞    

  𝑢 → 𝑣𝑟𝑠𝑖𝑛(𝜃)    𝑓𝑟𝑜𝑚 𝐼𝐶, 𝐵𝐶                           
 𝐴𝑟𝑛(Ccos(𝑛𝜃) + Dsin(𝑛𝜃)) = 𝑣𝑟𝑠𝑖𝑛(𝜃)    
 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 𝑐𝑜𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑡    
 𝑛 = 1 , 𝑐 = 0 , 𝐴𝐷 = 𝑣   

(𝐴𝑅 +
𝐵

𝑅
) (Dsin(𝜃)) = 0  ,   𝐵 = −𝐴𝑅2   

 substitute 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑜                                          

𝑢 = (𝐴𝑟𝑛 +
𝐵

𝑟𝑛
) (Ccos(𝑛𝜃) + Dsin(𝑛𝜃)) 

𝑢 = (𝐴𝑟 −
𝐴𝑅2

𝑟
) 𝐷𝑠𝑖𝑛𝜃                                                        

𝑢 = 𝑣 (𝑟 −
𝑅2

𝑟
) sin(𝜃) 

𝑢 𝑖𝑠 𝑠𝑡𝑟𝑒𝑎𝑚 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛as shown in fig. (5) 

 

Fig. 5.a. complex 3d plot for Real part u and 2d plot 

for stream lines. 

 

Fig. 5.b. complex 3d plot for Imaginary part of u and 

2d plot for stream lines. 

Solving the same P.D.E again for velocity potential where;                                                             

 𝑢(𝑅,𝜃) = 2𝑣𝑅𝑐𝑜𝑠(𝜃)   ,     𝑟 = 𝑅     

 𝑟 → ∞   ,    𝑢 → 𝑣𝑟𝑐𝑜𝑠(𝜃) 

𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 𝑐𝑜𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑡𝑠 𝑡𝑜 𝑔𝑒𝑡 𝐷 = 0    
𝑛 = 1 ,   𝐴𝐶 = 𝑣 ,   𝐵 = 𝐴𝑅2 𝑡ℎ𝑒𝑛 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒            

 𝑢(𝑟,𝜃) = 𝑣 (𝑟 +
𝑅2

𝑟
) cos(𝜃)    

𝑤ℎ𝑒𝑟𝑒 𝑢 𝑖𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  as shown in fig. (6) 
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Fig. 6.a. complex 3d plot for Real part u and 2d plot 

for velocity potential. 

 

Fig. 6.b. complex 3d plot for Imaginary part of u and 

2d plot for velocity potential. 

By adding stream lines and velocity potential to get the 

potential flow 

 𝑈 = 𝑣 (𝑟 −
𝑅2

𝑟
) sin(𝜃) + 𝑣 (𝑟 +

𝑅2

𝑟
) cos(𝜃)   

as shown in fig. (7) 

 

Fig. 7.a. complex 3d plot for u and 2d plot for stream 

lines and velocity potential. 

 

Fig. 7.b. animated vector field plot for circular 

cylinder 

5.  Conclusion 

The second-order linear PDEs can be classified into three types, 

which are invariant under changes of variables. The types are 

determined by discriminant. This exactly corresponds to the 

different cases for the quadratic equation satisfied by the slope 

of the characteristic curves. Elliptical equations have none 

family of (real) characteristic curves. All the second order 

elliptical PDE of equations can be reduced to canonical forms 

to be simulated and modeled allowing the analysis of physical 

phenomena to predict the variance over time as it serves the 

steady state solution for both hyperbolic and parabolic linear 

PDES which act as basic steady simplified solution for 

hyperbolic and parabolic equation. 
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