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Abstract—The integration of robotics into daily life applications
is growing every day. Unmanned Aerial Vehicles (UAVs) are being
extensively used for inspecting indoors, underground, surveying
disaster sites, and tactical Search-and-Rescue missions. As these
applications are mainly dependent on GPS signals, awareness
increased of its two major shortcomings I) weak-to-no GPS signals
at these locations, and II) ease at which the agents could be
intentionally blocked from GPS access or communication signals
at military or critical sites. Although this technology is still
evolving, the movement toward developing algorithms that allow
the operation of UAVs swarm is rising; to allow sharing of
complicated tasks amongst the agents reducing the role of human
operators. This paper discusses a reliable solution allowing a
swarm of UAVs to traverse terrains in GPS-denied environments,
using visual odometry to geo-localize. The proposed localization
methodology comprises two stages: database preparation for the
environment and onboard inference for real-time localization and
navigation. The experimental results show that the proposed image-
based localization succeeded in localizing the quadcopter and
sharing its position with other quadcopters in the swarm formation.
Additionally, the proposed swarm formation is able to control the
leader and follower quadcopters to follow a predefined path with
pre-set relative distance between the leader and follower.

I. INTRODUCTION

Autonomous independent navigation systems are necessary
to safely operate UAVs in dangerous environments. Navigation
may be obstructed by several means such as inspecting indoors
and mining sites where these locations have poor GPS signals
disrupting the agent from executing its mission. In addition,
inspecting bridge structures and surveying disaster sites would
have weak-to-no GPS signal. Furthermore, missions involving
critical infrastructures sites and military Search-and-Rescue
facing intended jamming targeting GPS and communication
signals; these operations might be at high risk of failure [1].

Recently, the robotic swarm is an advanced technology
to share a complicated task between agents to reduce the
role of human operators and decision-making without direct
intervention. Sets of swarm algorithms are used for controlling
each agent in the swarm formation. These algorithms allow
swarm agents to share tasks amongst themselves [2].

GPS-denied navigation depends on several methodologies.
The capability of applying GPS-denied techniques is limited
to onboard sensors available in which weight, cost, and com-
putation power are needed in the field of UAVs.

Geolocating robotics is achieved by combining readings
from velocity and rotation sensors to estimate the agent’s posi-

Fig. 1. The proposed image-based localization of the quadcopter.

tion [3], yet sensors are susceptible to errors; consequently, the
process of geolocation is complex and limited by mathematical
modeling of input noise. LiDAR-Aided INS is a scan that
fits aided Inertial Navigation Systems (INS) with a low-cost
laser scanner, Light Detection and Ranging (LiDAR) used for
environments in which GPS signal is degraded or denied [4].
Anchored Beacons are devices used with Indoor Positioning
Systems (IPS) [5], indoor navigation seems more complex as
indoor structures have many reflecting mediums that lead to
multi-path and delay problems.

Visual Odometry can work through visual feedback from a
camera only, or both camera and other sensors. It estimates
motion by monitoring changes in sequential images acquired
by a vision system mounted on the agent. Features are selected
and matched over successive frames to compute ego-motion,
then the onboard computer processes the readings incoming
from the sensors to perceive the optimal path to plan. The
built-up database can be approached either by using an online
satellite imagery application [6]–[8], or by pre-mapping the
area to be traversed prior to executing a specific mission [9].

In this paper, we introduce an image-based localization ap-
proach for centralized control of swarm quadcopters using vi-
sual odometry of pre-mapped areas as shown in Figure 1. First,
we present in section II-A localization discussing database
preparation for the subjected environment and onboard infer-
ence for real-time localization and navigation. Then, in section
II-B swarming using two agents and intercommunication. The
experimental results are illustrated in section III including
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theoretical trials inside the laboratory and discussing the
results, and on-field experiments with detailed procedures and
outcomes. Finally, we conclude with future work in section
IV.

II. METHODOLOGY

Developing a GPS-denied navigation system is a necessity
as an alternative localization system to overcome GPS-related
problems. In this section, we introduce the proposed approach
for image-based localization of the quadcopter. We will ana-
lyze thoroughly our chosen methodology to implement such a
system, first of all, In this section, we present our methodology,
Primarily, divided into two parts: (A) Localization discussing
stages; 1. Database preparation for the subjected environment
and 2. Onboard inference for real-time localization and navi-
gation, (B) Multi-agent Swarming.

A. Localization

The core of image-based localization is fetching and
matching the pre-saved data at acceptable speed and accuracy.
This method can be replaced by getting the imagery data
from satellites (e.g., Google Earth) to overcome the need of
traversing the environment in advance.

1) Database preparation: This process is divided into three
steps;

• Pre-mapping,
• Filtering,
• Pre-processing.

In Pre-mapping process, the proposed quadcopter platform
with onboard sensors is used to fly over the selected environ-
ment to capture the necessary imagery. The captured footage of
the environments is saved to the Jetson Nano. During the pre-
mapping process, the quadcopter maintained a constant speed,
altitude, and fixed camera FOV while mapping and testing to
avoid anomalies and mismatched features Figure 2.

Fig. 2. Mapping of the Military Technical College (MTC) stadium.

Potential camera poses are calculated to obtain the altitude
of the quadcopter and the angle of view that fit our task.
Logitech C920 camera is fixed nadir with 78 FOV. The
quadcopter is flying at 50 m altitude to get 55 meters of ground
distance in the pictures and 1.5 m/s. Overlapping of 50% or

above is recommended for mapping the field, while during
database building; it is better to obtain overlapping 15% -
30%. The camera is set to record footage of 20 images/second
with a resolution of 800*600 pixels of an average size of 600
Kilobytes each as shown in Figure 3, resulting in around 7.2
Gigabytes of storage needed for 10 minutes of mapping.

Fig. 3. Screen shot of the MTC’s stadium from the UAV’s onboard camera.

While in Filtering process, well-captured images covering
most of the land area are selected from the whole database to
reduce localization error and optimize onboard memory.

Finally, to reduce the onboard processing as Pre-processing
step, features are extracted from each image locally [10], then
attached to coordinates of the corresponding center point in
Latitude and Longitude format, saved in a pickle file, and
furtherly uploaded to the agent.

2) Onboard Inference: The database is then applied to
the agent’s Jetson Nano for further online processing during
missions. The images are captured in real-time and compared
with images at the approximate position from the database
according to matched features. This process is divided into
two steps; Matching strategy, and Pose Estimation.

In Matching strategy, the captured image is transformed
into grayscale; it is furtherly compared to other images in the
local database to find the highest match ratio, to conclude the
correct orientation to rotate at, using OpenCV’s homography
built-in function; to map each point represented by a 3×3
matrix to its corresponding image, then determine its position,
orientation, and altitude. Let us consider the first set of
corresponding points (x1, y1) in the first image and (x2, y2)
in the second image. Then, Homography H [11] maps them
in the following way:
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To calculate the Homography between two images, at least
4-point correspondences between them. An increasing number
of points affects the output efficiency increasingly. But of
course, not all mapped images and their corresponding in the
database will be on the same plane, to overcome this problem;
we implemented a photo-alignment algorithm by translating
Homography’s output matrix to Euler angles (Yaw, Pitch, and
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Roll) allowing us to transform each captured image to a stated
rotation position.

For Pose Estimation, the region of the match is calculated
in the captured image and the local one, then, the differ-
ence between centers (C1, C2) of both images is calculated
(∆X, ∆Y ) as shown in Figure 4. The latitude and Longitude
of the local matched image are converted to Universal Trans-
verse Mercator (UTM) to conclude the new target coordinate
by the following equation,

[
X
Y

]
=

[
X1

Y1

]
+

D ∗
[
| sin (sign(∆X ∗∆Y ) ∗ θ + |α|| ∗ sign(∆X)
| cos (sign(∆X ∗∆Y ) ∗ θ + |α|| ∗ sign(∆Y )

]
,

(2)

where D is the distance between C1 and C2 in meters, and θ
is the angle between database image and North direction.

Fig. 4. Coordinate estimation from live imagery against database illustration.

B. Multi-agent Swarming

Various missions could be conducted in such applications
with increasing benefits from each, swarm of UAVs aiding in
optimizing time and maximizing performance during missions.
Multiple formations can be implemented between a leader and
follower agents [12], we go for centralized line formation as
we currently test using only two quadcopters. Each agent is
equipped with a 2.4 GHz Wi-Fi transceiver module; allowing
initializing port communication between each. The leader
agent is selected and pre-configured with a static IP address
and port number to be accessed by the nearby agent. The
mission starts when both confirm the mutual connection, leader
initiates by sending a take-off command to the follower to
maintain synchronization, and instant position and altitude are
sent continuously to the follower agent to compute D-meter
consistent difference between them as follows,

[
X
Y

]
=

[
XLeader

YLeader

]
−D ∗

[
sin(Y awleader)
cos(Y awleader)

]
, (3)

where X, Y is in UTM coordinate.

III. EXPERIMENTAL RESULTS

A quadcopter with a sensory system is used for evaluating
the proposed image-based localization approach. The quad-
copter’s frame is Tarot 650 Carbon Fiber 4-Axis frame, the
quadcopter is operated by a single 6-cell Lithium-ion Poly
(LiPo) battery providing a maximum flight time of 10 minutes
at a maximum speed of 27 Km/h; connected to Pixhawk
flight controller and Jetson Nano for computer-vision tasks.
Logitech C920 camera is fixed nadir (vertically downward)
to the quadcopter to obtain the least distorted imagery while
operating as shown in Figure 5.

Fig. 5. The proposed quadcopter with vision system.

Hereby, we showcase the most productive tests, and results
that added to the research and enhanced our algorithms. Firstly,
the algorithm was tuned and verified offline in the laboratory,
the database for the approximate flight location was built from
imagery out of Google Earth at a suitable altitude, Figure 6
shows a sample from the whole database.

Fig. 6. Google Earth Imagery for the offline database.

To simulate the online footage, we did capture different
photos at the same altitude with different orientations around
the selected location. The algorithm explained in section II-A
was applied to conclude actual and estimated error as shown
in Figure 7.

Mapped estimates for the error tolerance at 150 meters
varied between 2-5 meters as shown in Figure 8; validating
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Fig. 7. The actual and estimated error for the matched area.

the efficiency of the pragmatic algorithm. For the first imple-
mentation of Scale-invariant feature transform (SIFT), code
was executed in CPU single-thread mode in 13.4 seconds as
for a 28-image database, to achieve more robust performance
that could be used in real-life applications; code was modified
to work in CPU multi-thread mode in 2.85 seconds as for the
same database with the same output.

Fig. 8. Experimental error tolerance.

The SIFT algorithm meets the criteria proposed for this
research; based on comparisons in [13] of SIFT versus
Speeded-Up Robust Features (SURF) and Oriented FAST and
rotated BRIEF (ORB) as shown in Table I in matching rate
yielded from different-angled images, also, referring to other
researchers in the same work-field, “SIFT is better than SURF
in different scale images” [14] validate the point.

Two different experiments were conducted on both agents
we work on with the same hardware, configurations, and
mission path. The first trial was performed in the afternoon,
and the second was performed in the evening to confirm
the robustness of operation time for the agents as shown in
Figure 9. Results showed that it is still not reliable to operate in

Table I
MATCHING RATE VERSUS ROTATION ANGLE [13]

Angle 0o 45o 90o 135o 180o 225o 270o

SIFT 100 65 93 67 92 65 93
SURF 99 51 99 52 96 51 95
ORB 100 46 97 46 100 46 97

Fig. 9. Afternoon against night footage.

weak lighting conditions, at least not with the same hardware
used.

The output footage was selected to build a real-time
database with the tuned algorithm, the mission was planned
along the stadium’s side and nearby area with a total covered
distance of 110 meters; at 1.2 m/s and 20-meter altitude as
shown in Figure 10.

Fig. 10. Real-time imagery results.

The results show the variance in matched points rather than
the offline database tests conducted at the laboratory; the lower
altitude did influence the comparable features in both real-time
and pre-mapped footage, offline tests yielded 2300 matched
points compared to 390 points in the real-time test, though,
error tolerance in the real-time experiment was 0.32 meters
between estimated and actual target coordinates.

Additionally, the goal of this work is to investigate the ap-
plicability of swarming to increase its effectiveness in several
applied fields. Both agents were configured to synchronize
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together before any mission as illustrated before. Where the
planned experiment was conducted to set target coordinates for
the leader agent to traverse a Z-shaped path across the MTC’s
stadium with a total distance of 120 meters at an altitude of 4
meters for the leader and 3 meters for the follower agent with
a ground speed of 1.5 m/s while maintaining 15 consistent
meters between the agents. The follower agent’s algorithm
depended on changing of ground speed to sustain the pre-set
D-meters difference; by comparing instant distance in meters
to the leader’s current position, if the distance exceeded the
pre-set relative distance, the follower’s speed will be changed
according to the following equation.

Vfollower = Vleader + 0.1 ∗∆L, (4)

Where ∆L is the position difference between the leader and
the follower - D.

Figure 11 illustrates the path taken by the leader agent in
red, followed by the follower agent in blue, where the follower
succeeded to follow the leader agent according to the proposed
formula in equation (4).

Fig. 11. Leader-follower paths; the leader is the red path while a follower is
the blue path.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a solution for GPS-denied UAVs
swarm navigation that suits modern localization purposes. A
swarm of two quadcopters with the necessary onboard sensory
system is used for image-based localization and autonomous
navigation. The proposed localization approach consists of two
stages; database preparation for the environment and onboard
inference for real-time localization and navigation. The exper-
imental results demonstrate the ability of the proposed local-
ization system in estimating the quadcopter’s global position.
Additionally, successful swarming tests were accomplished
with acceptable results, and ready to be modified to include
more than two agents simply. Across the different experiments
using both agents, reasonable pose estimation accuracy was
met, but not in the optimal time that will yield the best
performance in the field. Future work will address this issue
by introducing different hardware with high capabilities with
tuning whilst modifying the current algorithm. Moreover, the

algorithm is being tested to run in multi-threaded mode using
the GPU of the onboard computer instead of the CPU. To
widen fields of work for this application, a database should be
built-up from rendered imagery by Google Earth rather than
the necessity of pre-mapping the suspected field.
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