
Private-Engineered Cloud Platform

Mahney Mohsen
Electrical Engineering Department, Kafrelsheikh University, Egypt, mahanaelbna@gmail.com

Supervisor: Dr Ghada Hamissa, Lecturer in Computer Engineering & Systems Branch,

Electrical Engineering Department, Kafr El-Shiekh University, Egypt. ghada.hemesa@eng.kfs.edu.eg

Abstract– Cloud computing is the evolution of a variety of
technologies that have come together to change an
organization’s approach for building an IT infrastructure. The
infrastructure of the Platform is built based on common
computer network structure. In our research, we design a
private-cloud based platform serves, called PLATRAIN. It
serves mainly the learning organizations -such as
Universities. It provides a digital infrastructure to enable the
organization to detect, analyze and improve its Workflow.
PLATRAIN based on the cloud architectural system which is
private only for the concerned organization. It uses several
technologies such as edge computing (IoT), cloud computing
services and virtualized environment for users, applications,
projects and other services (such as Remote Learning). Our
PLATRAIN platform obtained the approval of intellectual
property rights from Information Technology Industry
Development Authority, Intellectual Property Rights
Protection Office at 6/12/2021. It is now active as a global
site for testing at the IP address: 20.39.198.54; for a year
(from 1/7/2022).

Keywords—Cloud computing, Network Topology, Platform
design, Cloud Models, PPDIOO, and Docker.

I. INTRODUCTION

Cloud computing is the evolution of a variety of technolo-
gies that have come together to change an organization’s ap-
proach for building an IT infrastructure. Cloud computing
term describes a variety of different types of computing. Con-
cepts that involve many computers connected through a real-
time communication network (typically the Internet) [1].
Cloud computing relies on sharing of various resources (net-
works, servers, storage, applications, and services) to achieve
coherence and economies of scale, and gives the highest inter-
est to how to maximize the effectiveness of utilization of the
shared resources. The general structure of cloud model
presents at Figure 1.

A. Private Cloud
Private clouds are loosely defined as cloud environments

solely dedicated to a single end user or group, where the envi-
ronment usually runs behind that user at group’s firewall. All
clouds become private clouds when the underlying IT infra-
structures dedicated to a single customer with completely iso-
lated access. But Private cloud no longer have to be sourced
from on premise IT infrastructure organizations are now
building private clouds on rented, vendor-owned data centers

located off-premises, which makes any location and owner-
ship rules obsolete this also led to a number of private cloud
subtypes.

B. Cloud Services
Cloud computing consists of three distinct modules of com-
puting services delivered remotely to clients via the internet.
Clients typically pay a monthly or annual service fee to
providers, to gain access to systems that deliver software as a
service, platforms as a service and infrastructure as a service
to subscribers. Clients who subscribe to cloud.

C. SaaS (Software as a Service)
SaaS provides clients with the ability to use software ap-

plications on a remote basis via an internet web browser. Soft-
ware as a service is also referred to as “software on
demand”. Clients can access SaaS applications from anywhere
via the web because service providers host applications and
associated data at their location. The main benefit of SaaS, is a
lower cost of use, since subscriber fees require a much smaller
investment than what is typically encountered under the tradi-
tional model of software delivery. Licensing fees, installation
costs, maintenance fees and support fees that are routinely as-
sociated with the traditional model of software delivery can be
virtually eliminated by subscribing to the SaaS model of soft-
ware delivery. Examples of SaaS include: Google Applica-
tions and internet based email applications like Yahoo! Mail,
Hot-mail and Gmail.

D. PaaS (Platform as a Service)

6th IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

1

Fig. 1 Cloud Model

PaaS provides clients with the ability to develop and pub-
lish customized applications in a hosted environment via the
web. It represents a new model for software development that
is rapidly increasing in its popularity. An example of PaaS is
Salesforce.com. PaaS provides a framework for agile software
development, testing, deployment and maintenance in an inte-
grated environment. Like SaaS, the primary benefit of PaaS, is
a lower cost of use, since subscriber fees require a much
smaller investment than what is typically encountered when
implementing traditional tools for software development, test-
ing, and deployment. PaaS providers handle platform mainte-
nance and system upgrades, resulting in a more efficient and
cost-effective solution for enterprise-software development.

E. “IaaS” (Infrastructure as a Service)
“IaaS” allows clients to remotely use IT hardware and re-

sources on a “pay-as-you-go” basis. It is also referred to as
“HaaS” (hardware as a service). Major IaaS players include
companies like IBM, Google and, “Amazon.com”. “IaaS” em-
ploys virtualization, a method of creating and managing infra-
structure resources in the “cloud”. “IaaS” provides small start-
up firms with a major advantage, since it allows them to grad-
ually expand their IT infrastructure without the need for large
capital investments in hardware and peripheral systems.

Our research is organized as follows. Section II presents
the requirements and analysis of our private cloud. PLA-
TRAIN platform architecture is detailed in section III. The
Cloud Core Engine is explained in detailed in section IV. Sec-
tion V describes the Virtualization System. Our PLATRAIN
Platform Implementation is detailed in section VI. The De-
ployment and the conclusion are presented in sections IIV and
IIIV, respectively.

II. PRIVATE-CLOUD REQUIREMENTS & ANALYSIS

The infrastructure of the Platform is built using computer
network. It is an interconnection between computers. It acts as
basis of communication in Information Technology (IT). It is
system of connected computing devices and shares informa-
tion and resources between them. The devices in network are
connected by communication links (wired/wireless) and share
data by Data-communication System.

A. Network Design
Network design is the practice of planning and designing

a communications network. It starts with identifying business
and technical requirements and continues until just before the
network implementation stage. Also, it includes network
analysis, IP addressing, hardware selection, and implementa-
tion planning. Before we dive into how to design a network,
let’s network lifecycle models. One of the most popular net-
work lifecycle models is Cisco’s PPDIOO (Prepare, Plan, De-
sign, Implement, Operate and Optimize) model [2], shown in
Figure 2.
 Prepare. This is where you define high-level requirements

and strategy. For example, your deliverables from this phase
may include requirements documentation.

 Plan. This stage deals with specific network requirements
based on information gathered in the planning stages.

 Design. During the design stage, the information gathered
from the previous two stages is used to create a detailed net-
work design.

 Implement. This is where the work gets done to configure
and deploy the network infrastructure. There is often testing
to validate the design in this phase. Operate. This is the por-
tion of the life-cycle where the network is in production use.
During this stage, monitoring is an important part of validat-
ing that the network is working as designed and being able
to quickly address issues when it isn’t.

 Optimize. At some point in most networks’ life-cycle,
tweaks and optimizations are needed [2]. This is the stage
where those changes are identified. For major changes, the
cycle begins again to plan and implement them. Now, after
understanding the basics of a network lifecycle model let’s
start in network process designing.

B. Network Topology
The configuration of a network is key to determining its

performance, at Figure 3. Network topology is the way a net-
work is arranged, including the physical or logical description
of how links and nodes are set up to related to each other.
There are numerous ways a network can be arranged. Figure 3
refers to simple design which clarify how various nodes, de-
vices and connections are physically or logically arranged to
each other.

The Layout of our network plays an essential role in how and
how well network functions which in turn help to reduce
operational and maintenance costs.

III. PLATRAIN PLATFORM ARCHITECTURE

6th IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

2

Fig. 2 PPDIOO Model
(Prepare, Plan, Design, Implement, Operate and Optimize)

Fig. 3 Network Topology

PLATRAIN is a private cloud platform which provides a
digitalized infrastructure for organizations especially educa-
tional ones. Our PLATRAIN Platform, at Figure 4, consists of
two main parts: cloud system, analysis & telemetry manage-
ment system. It uses several technologies such as edge com-
puting (IoT)- which is responsible for analytics and teleme-
try-, cloud computing services -by implementing a micro
cloud system to provide storage- and virtualized environment
for users, applications, projects and other services (such as Re-
mote Learning). By using such abilities we will extend the
power of the platform unleashing the horizon of creativity.

IV. CLOUD CORE ENGINE

In this section, we present how requests are handled and
routed for the desired service and how to provide the user (i.e.
app) with data and information to be processed and produce a
full-filled application, see Figure 5.

A. Core Engine Components
Five main parts in our cloud core engine [2]:
1. Auth Server. It handles the process of authentication

and authorization process, protect API Routes, generat-
ing Tokens and verifying them.

2. User Management. It is responsible for registering
Users and Query User’s Information.

3. App Engine. It responsible for registering application to
be available for users. It provides the user with core ap-
plications such E-learning Platform.

4. Core Services: contain the services to provide the core
abilities to enable applications to perform actions. The
main Core Service is “Container Management Service”.
This is one of most important services which provides
the user with the ability of creating virtualized contain-
ers to be used as a virtual computer and create, delete,
stop, start Containers. File Management Responsible
for downloading, uploading files and files handling.

5. Database part. It is responsible for state persistence of
the engine.

V. VIRTUALIZATION SYSTEM

In order to provide the capabilities of virtualization in our
platforms we used Docker technology to make virtualization.
We had to provide this easily to the user on the platform,
through a simple interface with which he can easily deal with,
and here we decided to use many technologies that interact
with each other.

A. Virtualization
Virtualization uses software to create an abstraction layer

over computer hardware that allows the hardware elements of
a single computer—processors, memory, storage and more—
to be divided into multiple virtual computers, commonly
called virtual machines (VMs). Each VM runs its own operat-
ing system (OS) and behaves like an independent computer,
even though it is running on just a portion of the actual under-
lying computer hardware [2]. It enables more efficient utiliza-
tion of physical computer hardware and allows a greater re-
turn on an organization's hardware investment. Today, virtual-
ization is a standard practice in enterprise IT architecture. It is
also the technology that drives cloud computing economics.
Virtualization enables cloud providers to serve users with their
existing physical computer hardware; it enables cloud users to
purchase only the computing resources they need when they
need it, and to scale those resources cost-effectively as their
workloads grow.

B. Docker
The Docker is an open source containerization platform.

It enables developers to package applications into containers
—standardized executable components combining application
source code with the operating system (OS) libraries and de-

6th IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

3

Fig. 4 PLATRAIN Platform architecture

Fig. 5 PLATRAIN Platform Core Engine

pendencies required to run that code in any environment [3].
Containers simplify delivery of distributed applications, and
have become increasingly popular as organizations shift to
cloud-native development and hybrid multi cloud environ-
ments.

Containers are made possible by process isolation and vir-
tualization capabilities built into the Linux kernel. These capa-
bilities enable multiple application components to share the
resources of a single instance of the host operating system [3].
This behavior happens much the same way that a hypervisor
enables multiple virtual machines (VMs) to share the CPU,
memory and other resources of a single hardware server. As a
result, container technology offers all the functionality and
benefits of VMs, including application isolation, cost-effective
scalability.

Why Docker? We choose Docker to achieve virtualization
because of the following benefits:
• Reduced IT management resources.
• Smaller size means one physical machine can host many
containers.
• Less code to transfer, migrate, and upload workloads.
• Lightweight and startup in milliseconds.
• Requires less memory space.
• Native performance and
• Easily portable and highly secure.

 So, depending upon these configurations and advantages
we could say that containers are overcoming virtual machines.
The famous global researcher Gartner has predicted that by
2023, more than 50% of companies will adopt Docker con-
tainers [4 and 5].

C. Technologies in PLATRAIN platform
In our project, we used several technologies that work to-

gether to achieve the target of the project, we can split the
technologies into two main parts: Backend Technologies the
backend, we used the Python programming language, Django
Framework and Docker SDK altogether to make the backend
of our project. Docker SDK Docker provides an API for inter-
acting with the Docker daemon (called the Docker Engine
API), as well as SDK Python. The SDKs allow you to build
and scale Docker apps and solutions quickly and easily. A
Python library for the Docker Engine API [5].

D. SSH Network Protocol
The SSH protocol (refers to Secure Shell protocol) is a

method for secure remote login from one computer to another,
shown in Figure 6. It provides several alternative options for
strong authentication, and it protects the communications se-
curity and integrity with strong encryption. The protocol
works in the client-server model, which means that the con-
nection is established by the SSH client connecting to the SSH
server [2]. The SSH client drives the connection-setup process
and uses public key cryptography to verify the identity of the
SSH server. After the setup phase the SSH protocol uses
strong symmetric encryption and hashing algorithms to ensure
the privacy and integrity of the data that is exchanged between
the client and server.

 E. Back-End Structure:
Include three parts: Docker server, platform hosting and

client side, as shown in Figure 7.

F. VM (Virtual Machine) services
Firstly, we install Docker and Docker container with it re-

lated databases on a separate machine to work as a server.
This allows us to send it requests and receives responses from
it. After that we use Docker SDK for Python programming
language to write a middleware that will be executed by the
requested restful API. Figure 8 presents briefly the steps of
VM services.

We built middleware that includes Python function with
the help of the Docker SDK. These middleware functions are
responsible for dealing directly with Docker server to create,
delete, start, stop specific container on the Docker server or
get specific container details. Secondly, we built restful API
on top of these middleware functions to allow us build the
frontend for this service.

G. Front-End Structure
We used the REST API [6] built in the backend to build

our simple front-end of the platform, as shown in Figure 9.

6th IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

4

Fig. 7 Overview of our project Architectural

Fig. 6 SSH Protocol

Fig. 8 VM Model

Fig. 9 Front-end Structure

In the designing our pages, we use the following software
tools: CSS (styling language), Bootstrap (ver.5) which is CSS
framework to direct the designs of the pages to be responsive,
and JavaScript code. In this stage, we used the API provided
by the backend to achieve the goal of the project. Here we re-
quested all the API using JavaScript fetch API and handled
those using JavaScript promises. In this stage, we also handled
any errors provided by end-users by showing them helpful
messages that help them to show out what the problem was.
Based on the sequence of the pages and know how the flow of
the user in our platform pages as shown in Figure 10.

H. Software as Service

In this section, we present the cloud application serveries
used in our PLATRAIN and their benefits that depend on
SaaS (Software as a Service). The applications that are being
prepared so far to be an investigation of an idea SaaS. One of
these applications is (draw.io) [7] and terminal bases web
view, as shown in Figure11.

VI. PLATRAIN PLATFORM IMPLEMENTATION

Our platform home page, at Figure 12, contains four main
services are::

• Cloud services.
• E-learning platform.
• User files, notes, links, and manager.
• Cloud Application (SaaS)

A. E-learning Platform FAQ

E-learning strategy was a very good way out from the
pickle of non-ability to communicate face to face. In our
project we decide to build private E-learning Platform with
specific requirements to be used in certain organization –ac-
cording to its demand. For example, E-Learning educational
platform at universities.

B. E-learning System Design and implementation

B.1 Authentication System
Website authentication is the security process that allows

users to verify their identities in order to gain access to their
personal accounts on a website. This process occurs behind
the scenes any time an individual logs into an online account,
including social media profiles, e-Commerce sites, rewards
programs, online banking accounts, and more. When a user
creates a new account on a website, they create a unique ID
and key that will be used in the future to verify their identity
and allow them back into the account. That ID and key are
then stored in a highly secure web server to compare future
credentials against.

Authentication steps are summarized as following:
1. Creating an account for all students and stuff.
2. Adding users to the system, as at Figure 13.

3. Adding a csv file of users, as shown in Figure 14.

6th IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

5

Fig. 10 Virtualization page flow

Fig. 11 Cloud applications UI

Fig. 12 Home page of PLATRAIN platform

Fig. 13 Adding single user

Fig. 14 add user by csv

 B.2 Login system
All student, staff members have accounts that can be

accessed by username and password and the system checks if
this user has an account or not, shown in Figure 15.

B.3 Reset Password
In case that the user forgot his password, he can reset it by

using his e-mail, shown in Figure 16.

B.4 Logout
There is a logout button that appears instead of the login

button in the navigation bar so that we can logout the system
when we finish using it, then user can login whenever he
wants.

B.5 Functionalities
1. Subjects: Every subject has information about it,

lectures, assignments, and quizzes. Figures 17 and 18 show
the subjects is and how to create new subject, respectively.

2. Lectures: UI page to show available lectures, shown in
Figure 19.

3. Assignments: Professor can add new assignment grade
them. Also, Student can send an answer and edit or delete it
before the assignment final date finishes, shown in Figure 20

 4. Quizzes: Every quiz consists of a number of questions
(mcq, true false). Professor can add new quiz and grade them,
shown in Figure 21.

B.6 Settings
It allows the admin to add and modify and control the

platform options, shown in Figure 22.

6th IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

6

Fig. 18 Create new subject

Fig. 17 Subjects

Fig. 21 Quizes UI

Fig. 16 Password Rest

Fig. 15 login UI

Fig. 19 Lectures UI

Fig. 20 New assignment

VII. DEPLOYMENT

Figure 23 presents the deployment model of our project.
It shows the overall design of our project on servers including
the devices, APIs, Docker or (containerization) and
networking elements.

A. Distributed Systems
Known as distributed computing, is a system with multi-

ple components located on different machines that communi-
cate and coordinate actions in order to appear as a single co-
herent system to the end-user.
A distributed system also known as computing environment in
which various components are spread across multiple
computers (or other computing devices) on a network.

Distributed systems are an important development for IT
and computer science as an increasing number of related jobs
are so massive and complex that it would be impossible for a
single computer to handle them alone. Distributed systems re-
duce the risks involved with having a single point of failure,
bolstering reliability and fault tolerance. Modern distributed
systems are generally designed to be scalable in near real-
time; also, you can spin up additional computing resources on

the fly, increasing performance and further reducing time to
completion. The machines that are a part of a distributed sys-
tem may be computers, physical servers, virtual machines,
containers, or any other node that can connect to the network,
have local memory, and communicate by passing messages.
Historically, distributed computing was expensive, complex to
configure and difficult to manage. But thanks to software as a
service (SaaS) platforms that offer expanded functionality,
distributed computing has become more streamlined and af-
fordable for businesses large and small. As a result, all types
of computing jobs use distributed computing. In fact, many
types of software. As shown fig24

B. Messaging
Messaging enables software applications to connect and

scale by separating the sending and receiving of data. A mes-
saging system manages the channels that define the paths of
communication between the servers and the sending and re-
ceiving of messages. The main task of a messaging system is
to reliably move messages from the sender’s computer to the
receiver’s computer.
C. Servers Operating Systems

Community Enterprise Operating System (CentOS) offers
an open-source, enterprise-class free operating system that is
practicably compatible with Red Hat Enterprise Linux
(RHEL). “Gregory Kurtzer” is the founder of CentOS.
CentOS developers use the RHEL source code to generate a
product that is highly comparable to RHEL. CentOS provides
a development platform in one of the best and most powerful
available distributions. It is a community-driven free software
project built to provide a robust platform for the open source
communities to grow. It is highly adaptable, as well as safe
and strong. In addition, it features several corporate-level se-
curity updates that declare it an excellent choice for any use,
shown in Figure25

D. Load Balancer
A load balancer is a device that acts as a reverse proxy

and distributes network or application traffic across a number
of servers, shown in Figure26. Load balancers are used to in-
crease capacity (concurrent users) and reliability of applica-
tions. They improve the overall performance of applications
by decreasing the burden on servers associated with managing
and maintaining application and network sessions, as well as

6th IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

7

Fig. 22 Platform Settings

Fig. 23 Deployment Model Fig. 25 CentOS

Fig. 24 Single Server

by performing application-specific tasks. Load balancing is a
core networking solution used to distribute traffic across mul-
tiple servers in a server farm.

D.1 .Nginx as a load balancer
NGINX is open source software for web serving, reverse

proxying, caching, load balancing, media streaming, and
more, shown in Figure 27. It started out as a web server de-
signed for maximum performance and stability. In addition to
its HTTP server capabilities, NGINX can also function as a
proxy server for email (IMAP, POP3, and SMTP) and a re-
verse proxy and load balancer for HTTP, TCP, and UDP
servers. Load balancing across multiple application instances
is a commonly used technique for optimizing resource utiliza-
tion, maximizing throughput, reducing latency, and ensuring
fault-tolerant configurations. It is possible to use NGINX as a
very efficient HTTP load balancer to distribute traffic to sev-
eral application servers and to improve performance, scalabil-
ity, and reliability of web applications with NGINX.

NGINX also supports health checks to mark a server as
failed (for a configurable amount of time, default is 10 sec-
onds) if its response fails with an error, thus avoids picking
that server for subsequent incoming requests for some time.

E. Gunicorn

The Gunicorn server is broadly compatible with various
web frameworks, simply implemented, light on server re-
sources, and fairly speedy, shown in Figure 28. Green Uni-
corn, is a Web Server Gateway Interface server. Implementa-
tion that is commonly used to run Python web applications.
Gunicorn is used to receive requests from the web server (e.g.,
Nginx) then passing it down to the python application to
process the request. This could be your Django app or Flask or
any other python web framework that uses WSGI.

VIII. CONCLUSION

In this project, we construct a private cloud based
platform. We called it PLATRAIN. It provides clients and
users with a lot of cloud services that are delivered remotely to
the clients via the internal network of the organization. In this
project we achieved over 90% efficiency performance.

IX. REFERENCES

[1] Cloud Computing, Concepts and Practices by Naresh Kumar Sehgal,
Pramod Chandra P. Bhatt (2018)

[2] Cloud Computing , Principles, Systems and Applications by Nick
Antonopoulos, Lee Gillam in Computer Communications and
Networks (2017)

[3] Accelerating Development Velocity Using Docker, Docker Across
Microservices by Kinnary Jangla (2018)

[4] https://www.Docker.com/
[5] https://Docker- py.readthedocs.io/
[6] Designing a RESTful API Interface by Brajesh De in API Management

(2017)
[7] https://drawio-app.com/

6th IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022.

8

Fig. 26 Load Balancer

Fig. 27 NGINX Load Balancer

Fig. 28 Gunicorn Server

https://drawio-app.com/
https://www.Docker.com/

	I. Introduction
	A. Private Cloud
	B. Cloud Services
	Cloud computing consists of three distinct modules of computing services delivered remotely to clients via the internet. Clients typically pay a monthly or annual service fee to providers, to gain access to systems that deliver software as a service, platforms as a service and infrastructure as a service to subscribers. Clients who subscribe to cloud.
	C. SaaS (Software as a Service)
	D. PaaS (Platform as a Service)
	E. “IaaS” (Infrastructure as a Service)

	II. Private-Cloud Requirements & Analysis
	A. Network Design
	B. Network Topology

	III. PLATRAIN Platform Architecture
	IV. Cloud Core Engine
	A. Core Engine Components

	V. Virtualization System
	A. Virtualization
	B. Docker
	C. Technologies in PLATRAIN platform
	D. SSH Network Protocol
	E. Back-End Structure:
	F. VM (Virtual Machine) services
	G. Front-End Structure

	H. Software as Service
	VI. PLATRAIN Platform Implementation
	A. E-learning Platform FAQ
	B. E-learning System Design and implementation
	VII. Deployment
	VIII. Conclusion
	IX. References

