
Unified Indoor Mapping with Swarm Mobile Robot
Based Monte Carlo Technique

Mohamed Yussuf, and Elsayed Abdelaziz
Depart. of Automotive Eng., Military Technical College, Egypt

{Mohammed1yusuf.awd,sayed.abdelaziz114}@gmail.com

Supervisor: Tamer Attia
Depart. of Automotive Eng., Military Technical College, Egypt

Abstract—This work aims to enable robots with the ability to
map unknown indoor environments. The proposed technique is
implemented with a differential drive robot (Ratbot). This work
focuses on the mapping of indoor environment with a swarm
of mobile robots. The navigation and mapping with a swarm of
Ratbot are based on fusion of each data collected by each robot to
build a unified map for the whole environment. The used sensors
in this research are Light Detection and Ranging (LIDAR),
IMU, and encoder to localize each robot and build the map
of the environment. Based on communication network between
thr Ratbots, the robots can share local sensing information to
coordinate the actions of all robots in the network. The motion
of all Ratbots is coordinated with a frontier exploration motion
planner that has been augmented with new sampling Strategies.
Finally, experimental results show the effectivness of the proposed
technique in building a unified map with a swarm of mobile robot.

I. INTRODUCTION

Indoor mapping is very difficult kind of mapping because
we cannot use GPS. So we use the Simultaneous Localization
and Mapping (SLAM) algorithm to solve this problem. In
general the indoor mapping is very difficult because some
environment have some long tunnels as underground subway.

Robotic swarm involves multi-robots in a team to solve a
problem; each has its own task to serve the main purpose;
sharing data using intercommunications. In addition, swarms
have desirable properties such as self-organization, high redun-
dancy, and the lack of single points of failure promote fault
tolerance, scalability and flexibility [1].

Robotic swarm is a perfect solution to create a map for
indoor environments because the whole map is divided into
sub-maps which are assigned for each robot. So, we do not
need single agent to move through these environments to map.

Mapping using single-robot is challenging enough but mul-
tiple robots adds another layer of challenging. In a multiple-
robot environment, robots must share all available data to
construct a global maps [2] but there are some problems while
using robot swarm like relative poses of robots, uncertainty of
the relative poses, updating maps with poses, and communi-
cations.

The key idea of markov localization is to compute a
probability distribution over all possible locations in the en-

06th IUGRC International Undergraduate Research Conference,
Military Technical College, Cairo, Egypt, Sep. 5th – Sep. 8th, 2022

vironment. If the robot doesn’t know its initial position the
robot believe is uniformly distributed to reflect the global
uncertainty. The robot maintains a belief distribution which is
updated upon robot motion, and upon the arrival of sensor data.
Such probabilistic representations are well-suited for mobile
robot localization due to their ability to handle ambiguities
and to represent degree-of-belief. [3].

In this study we use Monte Carlo Localization (MCL) [4]
also known as particle filter localization, is an algorithm for
robots to localize itself using a particle filter. Given a map
of the environment, the algorithm estimates the position and
orientation of a robot as it moves and senses the environment.
The algorithm uses a particle filter to represent the distribution
of likely states, with each particle representing a possible state,
i.e., a hypothesis of where the robot is. The algorithm typically
starts with a uniform random distribution of particles over the
configuration space, meaning the robot has no information
about where it is and assumes it is equally likely to be at
any point in space. Whenever the robot moves, it shifts the
particles to predict its new state after the movement. Whenever
the robot senses something, the particles are resampled based
on recursive Bayesian estimation, i.e., how well the actual
sensed data correlate with the predicted state. Ultimately, the
particles should converge towards the actual position of the
robot.

In this paper, we introduce .

II. AUTONOMOUS NAVIGATION AND MAPPING

A. Autonomous Navigation of Single Robot

Smooth and safe navigation of robot through the environ-
ment from start position to goal position while following safe
path and producing the optimal path length, is the main aim of
robot navigation. Regarding this matter, many techniques have
been tackled for robot navigation and path planning. Robot
navigation means the robot’s ability to determine its position
in its frame of reference and then to plan a path from its
start position to its goal location. In order to navigate in its
environment, the robot requires a map of the environment and
the method in which to interpret this map.

Navigation can be defined as the combination of the three
fundamental competences: Numbered (ordered) lists are easy
to create:

1) Self-localization

mailto:Mohammed1yusuf.awd@gmail.com
mailto:sayed.abdelaziz114@gmail.com
https://orcid.org/0000-0002-3393-6687


2) Path planning
3) Map-building
1) Methods of self-localization:
• Kalman Filter Kalman filtering has been successfully

applied for mobile robot localization in many systems.
But most of the time this method is unable to globally
localize the robot because this approach can only repre-
sent one pose hypothesis resulting in the robot’s inability
to recover from possible total localization failures.
The filter is based on the Bayes probability which as-
sumes the model and uses this model to predict the
current state from the previous state. Then, an error
between the predicted value of the previous step and
the actual measured present value obtained by measuring
instrument is used to perform an update step of estimating
more accurate state value. The filter repeats above process
and increases the accuracy. This process is simplified as
shown in Figure (1) However, the Kalman filter only
applies to linear systems. Most of our robots and sensors
are nonlinear systems and the EKF (Extended Kalman
Filter) modified from Kalman filter are widely used

Fig. 1. Basic concept of Kalman Filter

• Monte Carlo localization The main premise of Monte
Carlo localization (MCL) is to represent p(l) by sets of n
weighted samples (Li, Wi) Each Li corresponds to a robot
position, and the Wi are positive numerical factors called
importance weights, which add up to one. A procedure
is used for The prediction and correction update of the
sample sets. The MCL algorithm takes as input a sample
set S representing the current position estimate p(l) , a
sensor measurement s, and action information a,. Each
sample representing the posterior distribution for p(l) is
generated according to the following three steps

– Resampling
– Sampling
– Importance sampling

2) Path planning: Path planning is one of the most es-
sential part of autonomous mobile robot navigation system.
Several methods have been developed to find solutions for the
path planning problem. Path planning involves the determi-
nation of collision-free path from one point to another with
the shortest possible associated path. Depending on the nature
of environment, path planning can be divided into static and
dynamic. If obstacles change their position with respect to

time, it is referred as static path planning and if obstacles
change their position and orientation with respect to time,
then it is referred as dynamic path planning. There are several
algorithms for path planning such as

1) roadmap
2) cell decomposition
3) potential fields
4) bug algorithms
We will be discussing potential fields method. Which

showed the highest efficiency relative to other path planning
algorithms for our case.

• potential field method as a particle represented by a
point in configuration space q. The robot moves under
the influence of an artificial field of forces produced by
a goal and the obstacles present in the q. This field of
forces is specified as the negative gradient of a potential
function.
The effect of the repulsive potential on the robot is clearly
opposite from that of the attractive potential. now we want
the obstacles to apply repulsive forces on the robot, where
these forces are inversely Proportional in magnitude to
the distance between the robot and each obstacle. On
the other hand, repulsive forces from obstacles that are
too far away from the robot to post significant danger
are neglected. Therefore, a maximum effective distance
of the obstacle from the robot is assigned. Any obstacle
further than this effective distance will have no effect on
the robot. Thus, the repulsive potential can be expressed
as.

Vattract(q) =
1

2
Kattraction(q − qdesired)

2 (1)

Fattract(q) = Kattraction(q − qdesired)
2 (2)

Vrepul(q) =

{
1
2Krepul(1/d− 1/do) if d < do

0 if d ⩾ do
(3)

Frepul(q) =

{
−Krepul(1/d− 1/do)1/d

2 if d < do

0 if d ⩾ do
(4)

3) Map building: The mapping and localizing is a chicken
and egg problem. At certain points it is hard to consider
carrying out what first, either the localization or mapping.
Concurrently building map and localizing the robot in it is
the best practice being followed. Many of the techniques are
based on this concurrency and all try to find a solution for the
problem of simultaneous localization of mapping. The context
of mapping does not limit it extent only for mapping but
it is also useful in path planning for a mobile robot in the
environment. Once the proper map is produced the mobile
robot feels easy to locate itself in some part of it and localize.
But building a proper map is really a hard problem. The



process of building a map goes through many phases as shown
in Figure (1). Once the autonomous mobile robot is localized
with reference to the world coordinates it should build a new
map, if appropriate map is not available, or should start using
a map.Mapping includes simultaneously estimating the pose
of the robot and the map.

Fig. 2. building phases of map

Information Required in SLAM Let’s look at the materials
you need to create map with SLAM. First of all, we need to
define what we need when creating a map as shown in Figure
(3).first thing you need is the distance value. This meaning
the robot being the center of measurement, the robot should
be able to obtain the distance value from certain objects. For
example, information such as “the chair is 2m away from
the robot”. Distance data scanned from the XY plane using
sensors such as LDS and Depth camera is an example of such
information.Second is the pose value which stands for the
pose information of the sensor that is attached to the robot.
Thus, the pose value of the sensor depends on the odometry of
the robot. It is necessary to provide the odometry information
to calculate the pose value. In the Figure below, the distance
measured with Kinect is called ‘scan’ in ROS and the pose
(position + orientation) information is affected by the relative
coordinate, so it is called ‘tf’ (transform). As Figure below
show, we run SLAM based on two pieces of information,
‘scan’ and ‘tf’, and create the map we want.

Fig. 3. data required in slam

using the platform Robot Operating System (ROS) that are
available in Ubuntu. The algorithm chosen for this research
is Gmapping. Gmapping used the Rao-Black wellized Particle
Filter (RBPF) and take data from both laser sensor and robot
pose to create a 2D grid map. as shown in Figure (4). the
mapping flow process which is used for this research.

Fig. 4. data

B. Swarm of robots make mapping to indoor environment
Multiple robots can cooperate to manipulate large objects,

survey large areas in a short amount of time, and provide
system redundancy to enable multiple robots to cooperate to do
some missions better than single robot. The ratbot navigation
will depend on the data which each ratbot shared With each
other to build merged map by data which each ratbot Published
about unknown environment. Within these networks, robots
can share local sensing information and coordinate the actions
of all robots in the network.This study hopes to use ratbots
to excavate tunnels located in underground to help generate a
2-D map of them to protect people during their missions.

• Control on multi-robots to move Autonomous We
need to make control on swarm. In this project, Swarm
of robot is centralized control because one robot will be
able to give other robots the goals that each robot needs
to move autonomously to. first mission is a leader robot
(robot 0)as shown in Figure (5) takes a point as a goal
and all robot go there with shifting. Each robot takes a
goal and makes Autonomous navigation to its modified
goal.so we make network to connect all robots with each
other to share data.
In this project, we use three robots as a swarm. We give
leader a goal and all robots move to make arrowhead
shape at this goal.

Fig. 5. robors coordinate

• Frontier exploration In order for the robots to au-
tonomously explore an environment, we implemented
frontier exploration from scratch. By manipulating, the



occupancy grid generated from slam toolbox. we were
able to find all the frontier edges and then group the edges
into separate frontier regions via this algorithm. For each
frontier region, we found the region’s centroid.eventually,
I determined which centroid was closest to the robot’s
current position and chose that centroid to move to it. This
process repeats until all areas of the map are explored.
Frontier edges are open cells adjacent to unknown cells,
marked with an “x” below as shown in Figure (6) Frontier

Fig. 6. fronter exploration cells

regions are groups of adjacent frontier regions, marked
with different colors below. Each region’s centroid is also
marked as shown in Figure (7).

Fig. 7. fronter regions

• Map Merging Once all the maps were of the appropriate
size and the robots we’re able to explore frontiers, it was
time to start merging the maps. Please see Figure (8) to
understand the structure of merging multiple robot maps.

Fig. 8. the structure of merging multiple maps

For operations where you know the initial positions of the
robots, map merging is relative straightforward. However,
in a realistic setting, it’s unlikely that someone would
have that kind of control or knowledge. But without

knowing the robot positions, how can we merge the
maps? By stitching the sperate maps into one. Unfortu-
nately, this functionality has a catch; you have to initially
place the robots very close to each other so there is
enough overlap for the feature-matching algorithm to
work.
In my continued work on this project, I’ll be tackling this
issue and develop a method where the robots can start
exploring without any information about the other while
a feature detection algothrim works in the background
to detected matching areas of the maps. Once common
ground is found, we will then initiate the map merging
process and reconfigure the robots to explore frontiers on
the combined map instead of their local maps.

III. PROPOSED ROBOTS SENSORY SYSTEM

The design of the robot shown in Figure (9).it should be
simple and cost-effective. The robot must move autonomously
and must have the necessary sensors to do so. The operating
time of the robot must be long enough for the robot to do
its tasks and achieve its missions properly and consistently.
The operating time should be more than 1 hour. In our project
we need to use suitable sensors to enable robot to map and
navigate. Robot needs to know the position and the distance
between itself and the obstacles.

Where is the robot? It is the first question we need to ask!
the answer is “odometry”. Sensors are mounted on the Robot
to help achieve this mission of localizing the robot. There are
two types of sensors: internal and external.

Internal sensors help monitor the kinetic and coordination
state of the robot. Internal sensors used are:

1) compass
2) gyroscope
3) accelerometer
4) encoder
Beside having a full survey for the robot’s speed, accelera-

tion, and orientation, it is important for the robot to be aware
of the surrounding environment. Thus, the robot is equipped
with external sensors that can’t only inform the robot with the
surrounding obstacles but also determine the distance between
the robot and these obstacles. External sensors like:

1) camera
2) ultrasonic sensor
3) LIDAR

• LIDAR Using the encoder is not enough, we also need
to know what the world around the robot looks like.
The LIDAR we use is RP LIDAR. it is a low cost laser
rangefinder, 360 degree 2D laser scanner solution. The
sensor can perform 360-degree scan within six meters’
range. It scans by applying 5.5Hz when sampling 360
degrees each round. RP Lidar measures a distance based
on a laser triangulation ranging principle and it uses high-
speed vision acquisition. Mechanically, it emits modu-
lated infrared laser signal and the laser signal is then
reflected by the object to be detected. The returning signal



Fig. 9. ratbot

is sampled by a vision acquisition system in the RP Lidar.
The RP LIDAR is shown in Figure (10)

Fig. 10. LIDAR

• Encoder An encoder is an electromechanical device
which generates an electrical signal depending on the
position or the displacement of the measured item. It is
shown in Figure (11)In mobile robotics, rotary encoders
are used to measure the movement (direction and speed)
of each of the robot’s wheels. Odometry is the use
of motion sensors to determine the robot’s change in
position relative to some known position. For example, if
a robot is traveling in a straight line and if it knows the
diameter of its wheels, then by counting the number of
wheel revolutions it can determine how far it has traveled.
Robots will often have shaft encoders attached to their
driving wheels which emit a fixed number of pulses per
revolution. By counting these pulses, the processor can
estimate the distance traveled. Based on the following
assumptions and equations we can measure the linear
distance that the robot moves.

Dc =
Dl +Dr

2
(5)

x′ = x+Dc cos(ϕ) (6)

y′ = y +Dc cos(ϕ) (7)

ϕ′ = ϕ+
Dr −Dl

L
(8)

Assume each wheel has N “ticks “per revolution. Most

wheel encoders give the total tick count since beginning.
For both wheels:

∆tick = tick′ − tick (9)

D = 2πR
∆tick

N
(10)

Fig. 11. encoder

IV. EXPERIMENTAL RESULTS

The practical mission is to generate an indoor map for an
alley inside a building, a map that the robot generates from
type Occupancy Grid Map (OGM), which is commonly used
in the ROS community. The map as shown in Figure (12)
below, the white area is the free zone which the robot can
move in, the black area is the occupied zone which the robot
cannot move in, and the gray area is the unexplored.

Fig. 12. Occupancy Grid Map (OGM)

• 0 is unoccupied (white).
• 100 is occupied (black).
• -1 is unexplored (gray).

The practical mission for the robotic swarm is making the
swarm navigate an indoor environment using a map which
is generated by another robot. we can apply navigation to
robotic swarm as explained in the following steps 1.making
network between three robots 2.open terminals into each robot
through leader robot 2.opening ros in all robot from master
robot 3.openning a map through RVIZ 4.give goal to leader
robot 5.other robots generate goal as leader robot but with
shifted.

When the occupancy probability is published as ROS mes-
sage it can be extracted from the YAML file as an evenly



spaced field of binary random variables each representing the
presence of an obstacle at that location in the environment,
where

After mapping, the second step is navigation. There are four
steps to perform navigation.

• A navigation goal is sent to the nav stack to specify a
goal pose (position and orientation) in some coordinate
frame (commonly the map frame).

• The nav stack uses a path-planning algorithm in the
global planner to plan the shortest path from the current
location to the goal.

• This path is passed to the local planner, which tries to
drive the robot along the path. The local planner uses
information from the kinect in order to avoid obstacles
that appear before the robot but that do not exist in the
map, such as people. If the local planner gets stuck and
cannot achieve progress, it can ask the global planner to
make a new plan and then attempt to follow that.

• When the robot gets close to the goal pose, the action
terminates and we’re done.

The robot makes Autonomous navigation to go to goal by
moving on path planning which makes as a shortest path and
to avoid all obstacles as shown in Figure (13).

Fig. 13. path planning

V. CONCLUSIONS AND FUTURE WORK

This paper presents a robot navigation and mapping for an
indoor environment. the mapping method used generated a
very accurate map compared to the environment. Single robot
can navigate through this map and draw path which it moved
on as the shortest pass and can avoid obstacles. robotic swarm
is navigating in indoor environment by using the map which
the single robot generated. give robot0 goal and the rest of the
robots will take the same goal but with shift to move in an
arrow head formation as shown in Figure (14).

In future, we hope to use all agent to map. The map is
divided into sub-maps which are assigned for each robot to
generate global map.

Fig. 14. robotic swarm pattern

REFERENCES

[1] M. Dorigo, M. Birattari, and M. Brambilla, “Swarm robotics,”
Scholarpedia, vol. 9, no. 1, p. 1463, 2014.

[2] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-robot simultaneous
localization and mapping: A review,” Journal of Field Robotics, vol. 33,
no. 1, pp. 3–46, 2016.

[3] D. Yi and Y. Guozheng, “Collaborative localization of multi micro-
robots based on markov algorithm,” in MHS2003. Proceedings of 2003
International Symposium on Micromechatronics and Human Science
(IEEE Cat. No. 03TH8717). IEEE, 2003, pp. 349–355.

[4] V. A. Rosas-Cervantes, Q.-D. Hoang, S.-G. Lee, and J.-H. Choi, “Multi-
robot 2.5 d localization and mapping using a monte carlo algorithm on
a multi-level surface,” Sensors, vol. 21, no. 13, p. 4588, 2021.


	Introduction
	Autonomous Navigation and Mapping
	Autonomous Navigation of Single Robot
	Methods of self-localization
	Path planning
	Map building

	Swarm of robots make mapping to indoor environment

	Proposed Robots Sensory System
	Experimental Results
	Conclusions and Future Work
	References

